Experimental Research on Acoustic Emission Characteristics and Felicity Effects during Coal Fatigue Failure under Cyclic Loading

Joint Authors

Yang, Yongjie
Xing, Luyi

Source

Advances in Materials Science and Engineering

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-11, 11 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-08-27

Country of Publication

Egypt

No. of Pages

11

Abstract EN

In order to study the acoustic emission characteristics and Felicity effect in the process of coal fatigue failure and reveal the internal relationship between the fatigue damage evolution law and the acoustic emission activity, with the help of MTS815.02 electrohydraulic servo rock mechanics test system and PCI-2 acoustic emission detection and analysis system, a triaxial cycling loading acoustic emission test was carried out on the coal samples.

The results show that the higher the upper limit stress is, the more obvious the degree of fatigue damage will be caused by coal samples.

At the same time, the more active acoustic emission signal will appear.

The coal samples under linear loading are on the initial damage state, and slight fatigue, moderate fatigue, deep fatigue, and ultimate fatigue failure under cyclic loading.

The acoustic emission shows the “L-” type development evolution law in any previous stress level range, while at the last stress level, it shows the obvious “U-” type development evolution law.

The higher the frequency of the cyclic loading is, the higher the rate of initiation and expansion of the microcrack will be, while the more obvious acoustic emission phenomenon will appear.

Furthermore, the ringing counting rate is basically the same as that of the energy counting rate.

Under triaxial cyclic loading, a shear failure mode that extends along different directions of fracture surface will be presented.

The acoustic emission in the range of different stress levels shows a different degree of Felicity effect.

In contrast, it is more reasonable to use the principal stress difference as a parameter to study the Felicity effect of coal under cyclic loading.

American Psychological Association (APA)

Yang, Yongjie& Xing, Luyi. 2020. Experimental Research on Acoustic Emission Characteristics and Felicity Effects during Coal Fatigue Failure under Cyclic Loading. Advances in Materials Science and Engineering،Vol. 2020, no. 2020, pp.1-11.
https://search.emarefa.net/detail/BIM-1128174

Modern Language Association (MLA)

Yang, Yongjie& Xing, Luyi. Experimental Research on Acoustic Emission Characteristics and Felicity Effects during Coal Fatigue Failure under Cyclic Loading. Advances in Materials Science and Engineering No. 2020 (2020), pp.1-11.
https://search.emarefa.net/detail/BIM-1128174

American Medical Association (AMA)

Yang, Yongjie& Xing, Luyi. Experimental Research on Acoustic Emission Characteristics and Felicity Effects during Coal Fatigue Failure under Cyclic Loading. Advances in Materials Science and Engineering. 2020. Vol. 2020, no. 2020, pp.1-11.
https://search.emarefa.net/detail/BIM-1128174

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1128174