Behavior of Smooth Muscle Cells under Hypoxic Conditions: Possible Implications on the Varicose Vein Endothelium

Joint Authors

Alvarez-Mon, Melchor
Ortega, Miguel A
Asúnsolo, Ángel
Romero, Beatriz
Sainz, Felipe
Buján, Julia
García-Honduvilla, Natalio
Martinez-Vivero, Clara

Source

BioMed Research International

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-9, 9 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-10-18

Country of Publication

Egypt

No. of Pages

9

Main Subjects

Medicine

Abstract EN

Varicose veins are a disease with high incidence and prevalence.

In the venous wall, the smooth muscle cells (SMCs) act in the vascular homeostasis that secretes multiple substances in response to stimuli.

Any alteration of these cells can modify the function and structure of the other venous layers such as the endothelium, resulting in increases in endothelial permeability and release of substances.

Therefore, knowing the cellular and molecular mechanisms of varicose veins is imperative.

The aims of this study are to understand how SMCs of patients with varicose veins subjected to saphenectomy of the great saphenous vein react under hypoxic cell conditions and to determine the role of vascular endothelial growth factor (VEGF) in this process.

We obtained SMCs from human saphenous vein segments from patients with varicose veins (n=10) and from organ donors (n=6) undergoing surgery.

Once expanded, the cells were subjected to hypoxic conditions in specific chambers, and expansion was examined through analyzing morphology and the expression of α-actin.

Further gene expression studies of HIF-1α, EGLN3, VEGF, TGF-β1, eNOS, and Tie-2 were performed using RT-qPCR.

This study reveals the reaction of venous cells to sustained hypoxia.

As significant differential gene expression was observed, we were able to determine how venous cells are sensitive to hypoxia.

We hypothesize that venous insufficiency leads to cellular hypoxia with homeostatic imbalance.

VEGF plays a differential role that can be related to the cellular quiescence markers in varicose veins, which are possible therapeutic targets.

Our results show how SMCs are sensitive to hypoxia with a different gene expression.

Therefore, we can assume that the condition of venous insufficiency leads to a situation of sustained cellular hypoxia.

This situation may explain the cellular response that occurs in the venous wall as a compensatory mechanism.

American Psychological Association (APA)

Ortega, Miguel A& Romero, Beatriz& Asúnsolo, Ángel& Sainz, Felipe& Martinez-Vivero, Clara& Alvarez-Mon, Melchor…[et al.]. 2018. Behavior of Smooth Muscle Cells under Hypoxic Conditions: Possible Implications on the Varicose Vein Endothelium. BioMed Research International،Vol. 2018, no. 2018, pp.1-9.
https://search.emarefa.net/detail/BIM-1128290

Modern Language Association (MLA)

Ortega, Miguel A…[et al.]. Behavior of Smooth Muscle Cells under Hypoxic Conditions: Possible Implications on the Varicose Vein Endothelium. BioMed Research International No. 2018 (2018), pp.1-9.
https://search.emarefa.net/detail/BIM-1128290

American Medical Association (AMA)

Ortega, Miguel A& Romero, Beatriz& Asúnsolo, Ángel& Sainz, Felipe& Martinez-Vivero, Clara& Alvarez-Mon, Melchor…[et al.]. Behavior of Smooth Muscle Cells under Hypoxic Conditions: Possible Implications on the Varicose Vein Endothelium. BioMed Research International. 2018. Vol. 2018, no. 2018, pp.1-9.
https://search.emarefa.net/detail/BIM-1128290

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1128290