Nonlinear Dynamic Modeling and Model Reduction Strategy for Rotating Thin Cylindrical Shells

Joint Authors

Sun, Shupeng
Liu, Lun

Source

Complexity

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-17, 17 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-08-07

Country of Publication

Egypt

No. of Pages

17

Main Subjects

Philosophy

Abstract EN

Nonlinear dynamic modeling and model reduction strategy are studied in this paper for a rotating thin cylindrical shell.

The nonlinear dynamic model is first established in terms of ordinary differential equations, in which the effects of Coriolis and centrifugal forces are considered, as well as the initial hoop tension due to rotation.

This model describes both the in-plane vibrations and the flexural vibration and reflects the coupling effects of those deformations.

Based on this original model, a novel model reduction strategy is proposed to reduce the degrees of freedom by neglecting vibration modes predominated by in-plane vibrations.

Meanwhile, for the reduced-order model, the in-plane vibrations’ contributions to the rotating shell’s response are still preserved.

To validate the dynamic model and the model reduction strategy, comparisons and simulations are carried out.

Subsequently, nonlinear dynamic behaviors are investigated preliminarily by analyzing the rotating cylindrical shell’s amplitude-frequency responses under different excitation levels.

American Psychological Association (APA)

Sun, Shupeng& Liu, Lun. 2019. Nonlinear Dynamic Modeling and Model Reduction Strategy for Rotating Thin Cylindrical Shells. Complexity،Vol. 2019, no. 2019, pp.1-17.
https://search.emarefa.net/detail/BIM-1131822

Modern Language Association (MLA)

Sun, Shupeng& Liu, Lun. Nonlinear Dynamic Modeling and Model Reduction Strategy for Rotating Thin Cylindrical Shells. Complexity No. 2019 (2019), pp.1-17.
https://search.emarefa.net/detail/BIM-1131822

American Medical Association (AMA)

Sun, Shupeng& Liu, Lun. Nonlinear Dynamic Modeling and Model Reduction Strategy for Rotating Thin Cylindrical Shells. Complexity. 2019. Vol. 2019, no. 2019, pp.1-17.
https://search.emarefa.net/detail/BIM-1131822

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1131822