Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition

Joint Authors

Aceto, Gitana Maria
Catalano, Teresa
Curia, Maria Cristina

Source

BioMed Research International

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-19, 19 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-03-16

Country of Publication

Egypt

No. of Pages

19

Main Subjects

Medicine

Abstract EN

The development of colorectal cancer (CRC) is a multistep process initiated by a benign polyp that has the potential to evolve into in situ carcinoma through the interactions between environmental and genetic factors.

CRC incidence rates are constantly increased for young adult patients presenting an advanced tumor stage.

The majority of CRCs arise from colonic adenomas originating from aberrant cell proliferation of colon epithelium.

Endoscopic polypectomy represents a tool for early detection and removal of polyps, although the occurrence of cancers after negative colonoscopy shows a significant incidence.

It has long been recognized that the aberrant regulation of Wingless/It (Wnt)/β-Catenin signaling in the pathogenesis of colorectal cancer is supported by its critical role in the differentiation of stem cells in intestinal crypts and in the maintenance of intestinal homeostasis.

For this review, we will focus on the development of adenomatous polyps through the interplay between renewal signaling in the colon epithelium and reactive oxygen species (ROS) production.

The current knowledge of molecular pathology allows us to deepen the relationships between oxidative stress and other risk factors as lifestyle, microbiota, and predisposition.

We underline that the chronic inflammation and ROS production in the colon epithelium can impair the Wnt/β-catenin and/or base excision repair (BER) pathways and predispose to polyp development.

In fact, the coexistence of oxidative DNA damage and errors in DNA polymerase can foster C>T transitions in various types of cancer and adenomas, leading to a hypermutated phenotype of tumor cells.

Moreover, the function of Adenomatous Polyposis Coli (APC) protein in regulating DNA repair is very important as therapeutic implication making DNA damaging chemotherapeutic agents more effective in CRC cells that tend to accumulate mutations.

Additional studies will determine whether approaches based on Wnt inhibition would provide long-term therapeutic value in CRC, but it is clear that APC disruption plays a central role in driving and maintaining tumorigenesis.

American Psychological Association (APA)

Aceto, Gitana Maria& Catalano, Teresa& Curia, Maria Cristina. 2020. Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition. BioMed Research International،Vol. 2020, no. 2020, pp.1-19.
https://search.emarefa.net/detail/BIM-1131876

Modern Language Association (MLA)

Aceto, Gitana Maria…[et al.]. Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition. BioMed Research International No. 2020 (2020), pp.1-19.
https://search.emarefa.net/detail/BIM-1131876

American Medical Association (AMA)

Aceto, Gitana Maria& Catalano, Teresa& Curia, Maria Cristina. Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition. BioMed Research International. 2020. Vol. 2020, no. 2020, pp.1-19.
https://search.emarefa.net/detail/BIM-1131876

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1131876