An Adaptive Calibration Framework for mVEP-Based Brain-Computer Interface

Joint Authors

Yao, Dezhong
Zhang, Yangsong
Li, Fali
Ma, Teng
Li, Peiyang
Xu, Peng

Source

Computational and Mathematical Methods in Medicine

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-14, 14 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-02-26

Country of Publication

Egypt

No. of Pages

14

Main Subjects

Medicine

Abstract EN

Electroencephalogram signals and the states of subjects are nonstationary.

To track changing states effectively, an adaptive calibration framework is proposed for the brain-computer interface (BCI) with the motion-onset visual evoked potential (mVEP) as the control signal.

The core of this framework is to update the training set adaptively for classifier training.

The updating procedure consists of two operations, that is, adding new samples to the training set and removing old samples from the training set.

In the proposed framework, a support vector machine (SVM) and fuzzy C-mean clustering (fCM) are combined to select the reliable samples for the training set from the blocks close to the current blocks to be classified.

Because of the complementary information provided by SVM and fCM, they can guarantee the reliability of information fed into classifier training.

The removing procedure will aim to remove those old samples recorded a relatively long time before current new blocks.

These two operations could yield a new training set, which could be used to calibrate the classifier to track the changing state of the subjects.

Experimental results demonstrate that the adaptive calibration framework is effective and efficient and it could improve the performance of online BCI systems.

American Psychological Association (APA)

Ma, Teng& Li, Fali& Li, Peiyang& Yao, Dezhong& Zhang, Yangsong& Xu, Peng. 2018. An Adaptive Calibration Framework for mVEP-Based Brain-Computer Interface. Computational and Mathematical Methods in Medicine،Vol. 2018, no. 2018, pp.1-14.
https://search.emarefa.net/detail/BIM-1132253

Modern Language Association (MLA)

Ma, Teng…[et al.]. An Adaptive Calibration Framework for mVEP-Based Brain-Computer Interface. Computational and Mathematical Methods in Medicine No. 2018 (2018), pp.1-14.
https://search.emarefa.net/detail/BIM-1132253

American Medical Association (AMA)

Ma, Teng& Li, Fali& Li, Peiyang& Yao, Dezhong& Zhang, Yangsong& Xu, Peng. An Adaptive Calibration Framework for mVEP-Based Brain-Computer Interface. Computational and Mathematical Methods in Medicine. 2018. Vol. 2018, no. 2018, pp.1-14.
https://search.emarefa.net/detail/BIM-1132253

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1132253