Mesenchymal Stem Cell-Specific and Preosteoblast-Specific Ablation of TSC1 in Mice Lead to Severe and Slight Spinal Dysplasia, Respectively

Joint Authors

Fan, Shicai
Chen, Yuhui
Yang, Cheng
Liao, Jianwen
Lai, Pinglin
Huang, Hai
Bai, Xiaochun

Source

BioMed Research International

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-7, 7 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-03-27

Country of Publication

Egypt

No. of Pages

7

Main Subjects

Medicine

Abstract EN

Background.

TSC1-related signaling plays a pivotal role in intramembranous and endochondral ossification processes during skeletogenesis.

This study was aimed at determining the significance of the TSC1 gene at different stages of spinal development.

Materials and Methods.

TSC1-floxed mice (TSC1flox/flox) were crossed with Prrx1-Cre or BGLAP-Cre transgenic mice or mesenchymal stem cell- and osteoblast-specific TSC1-deficient mice, respectively.

Somatic and vertebral differences between WT and Prrx1-TSC1 null mice were examined at 4 weeks after birth.

Results.

No apparent body size abnormalities were apparent in newborn and 4-week- to 2-month-old mice with BGLAP-Cre driver-depleted TSC1.

Vertebral and intervertebral discs displayed strong dysplasia in Prrx1-TSC1 null mice.

In contrast, vertebrae were only slightly affected, and intervertebral discs from skeletal preparations displayed no apparent changes in BGLAP-TSC1 null mice.

Conclusion.

Our data suggest that the TSC1 gene is crucial for endochondral ossification during postnatal spine development but plays discriminative roles at different stages.

Mesenchymal stem cell-specific ablation of TSC1 led to severe spinal dysplasia at early stages of endochondral ossification while osteoblast-specific deletion of TSC1 affected vertebrae slightly and had no detectable effects on intervertebral discs.

American Psychological Association (APA)

Yang, Cheng& Liao, Jianwen& Lai, Pinglin& Huang, Hai& Fan, Shicai& Chen, Yuhui…[et al.]. 2020. Mesenchymal Stem Cell-Specific and Preosteoblast-Specific Ablation of TSC1 in Mice Lead to Severe and Slight Spinal Dysplasia, Respectively. BioMed Research International،Vol. 2020, no. 2020, pp.1-7.
https://search.emarefa.net/detail/BIM-1133998

Modern Language Association (MLA)

Yang, Cheng…[et al.]. Mesenchymal Stem Cell-Specific and Preosteoblast-Specific Ablation of TSC1 in Mice Lead to Severe and Slight Spinal Dysplasia, Respectively. BioMed Research International No. 2020 (2020), pp.1-7.
https://search.emarefa.net/detail/BIM-1133998

American Medical Association (AMA)

Yang, Cheng& Liao, Jianwen& Lai, Pinglin& Huang, Hai& Fan, Shicai& Chen, Yuhui…[et al.]. Mesenchymal Stem Cell-Specific and Preosteoblast-Specific Ablation of TSC1 in Mice Lead to Severe and Slight Spinal Dysplasia, Respectively. BioMed Research International. 2020. Vol. 2020, no. 2020, pp.1-7.
https://search.emarefa.net/detail/BIM-1133998

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1133998