Exosomes Derived from Brain Metastatic Breast Cancer Cells Destroy the Blood-Brain Barrier by Carrying lncRNA GS1-600G8.5

Joint Authors

Lu, Yunhe
Chen, Lei
Li, Liangdong
Cao, Yiqun

Source

BioMed Research International

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-10, 10 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-04-06

Country of Publication

Egypt

No. of Pages

10

Main Subjects

Medicine

Abstract EN

Brain metastasis is a major cause of death in breast cancer patients.

The greatest event for brain metastasis is the breaching of the blood-brain barrier (BBB) by cancer cells.

The role of exosomes in cancer metastasis is clear, whereas the role of exosomes in the integrity of the BBB is unknown.

Here, we established a highly brain metastatic breast cancer cell line by three cycles of in vivo selection.

The effect of exosomes on the BBB was evaluated in vitro by tracking, transepithelial/transendothelial electrical resistance (TEER), and permeability assays.

BBB-associated exosomal long noncoding RNA (lncRNA) was selected from the GEO dataset and verified by real-time PCR, TEER, permeability, and Transwell assays.

The cells obtained by the in vivo selection showed higher brain metastatic capacity in vivo and higher migration and invasion in vitro compared to the parental cells.

Exosomes from the highly brain metastatic cells were internalized by brain microvascular endothelial cells (BMECs), which reduced TEER and increased permeability of BBB.

The exosomes derived from the highly metastatic cells promoted invasion of the breast cancer cells in the BBB model.

lncRNA GS1-600G8.5 was highly expressed in the highly brain metastatic cells and their exosomes, as compared to the samples with reduced metastatic behavior.

Silencing of GS1-600G8.5 significantly abrogated the BBB destructive effect of exosomes.

GS1-600G8.5-deficient exosomes failed to promote the infiltration of cancer cells through the BBB.

Furthermore, BMECs treated with GS1-600G8.5-deprived exosomes expressed higher tight junction proteins than those treated with the control exosomes.

These data suggest the exosomes derived from highly brain metastatic breast cancer cells might destroy the BBB system and promote the passage of cancer cells across the BBB, by transferring lncRNA GS1-600G8.5.

American Psychological Association (APA)

Lu, Yunhe& Chen, Lei& Li, Liangdong& Cao, Yiqun. 2020. Exosomes Derived from Brain Metastatic Breast Cancer Cells Destroy the Blood-Brain Barrier by Carrying lncRNA GS1-600G8.5. BioMed Research International،Vol. 2020, no. 2020, pp.1-10.
https://search.emarefa.net/detail/BIM-1136888

Modern Language Association (MLA)

Lu, Yunhe…[et al.]. Exosomes Derived from Brain Metastatic Breast Cancer Cells Destroy the Blood-Brain Barrier by Carrying lncRNA GS1-600G8.5. BioMed Research International No. 2020 (2020), pp.1-10.
https://search.emarefa.net/detail/BIM-1136888

American Medical Association (AMA)

Lu, Yunhe& Chen, Lei& Li, Liangdong& Cao, Yiqun. Exosomes Derived from Brain Metastatic Breast Cancer Cells Destroy the Blood-Brain Barrier by Carrying lncRNA GS1-600G8.5. BioMed Research International. 2020. Vol. 2020, no. 2020, pp.1-10.
https://search.emarefa.net/detail/BIM-1136888

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1136888