Shortest-Path Optimization of Ship Diesel Engine Disassembly and Assembly Based on ANDOR Network

Joint Authors

Wei, Chen
Chen, Deng-Zhi
Jia, Guo-Ling
Hu, Zhi-Hua

Source

Complexity

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-15, 15 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-02-18

Country of Publication

Egypt

No. of Pages

15

Main Subjects

Philosophy

Abstract EN

Ship diesel engine disassembly and assembly (SDEDA) is essential for ship inspection and maintenance and navigation safety.

The SDEDA consists of various machinery parts and operations.

It is crucial to develop a system of SDEDA operations to improve the efficiency of disassembly and assembly (D&A).

Considering the “AND” and “OR” relations (modeled as links) among the D&A operations (modeled as nodes), an “AND/OR” network is developed to extend a specialized graph model for the D&A sequencing problem in the context of education and training.

Then, we devised a mixed-integer linear program (MILP) to optimize the SDEDA sequence based on the AND/OR network.

Considering the flow balance in the AND/OR network, we developed exact algorithms and random search algorithms using breadth-first, branch cut and depth-first strategies to minimize the cost of the shortest path that represents an optimal sequence of D&A operations.

To the best of our knowledge, it is the first try to formulate the D&A operations by an extended network model.

Numerical experiments show that the proposed algorithms are practical for solving large-scale instances with more than 2000 D&A operations.

The breadth-first shortest-path algorithm outperforms the MILP solver from the perspective of solution quality and computing time, and all developed algorithms are competitive in terms of computing time.

American Psychological Association (APA)

Chen, Deng-Zhi& Wei, Chen& Jia, Guo-Ling& Hu, Zhi-Hua. 2020. Shortest-Path Optimization of Ship Diesel Engine Disassembly and Assembly Based on ANDOR Network. Complexity،Vol. 2020, no. 2020, pp.1-15.
https://search.emarefa.net/detail/BIM-1140039

Modern Language Association (MLA)

Chen, Deng-Zhi…[et al.]. Shortest-Path Optimization of Ship Diesel Engine Disassembly and Assembly Based on ANDOR Network. Complexity No. 2020 (2020), pp.1-15.
https://search.emarefa.net/detail/BIM-1140039

American Medical Association (AMA)

Chen, Deng-Zhi& Wei, Chen& Jia, Guo-Ling& Hu, Zhi-Hua. Shortest-Path Optimization of Ship Diesel Engine Disassembly and Assembly Based on ANDOR Network. Complexity. 2020. Vol. 2020, no. 2020, pp.1-15.
https://search.emarefa.net/detail/BIM-1140039

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1140039