Adenosine A2A Receptor Mediates Inhibition of Synovitis and Osteoclastogenesis after Electroacupuncture in Rats with Collagen-Induced Arthritis

Joint Authors

Du, Zhong-heng
Chen, Yong
Zhang, Chunwu
Xie, Wen-xia
Cong, Wen-jie
Wang, Ze-dong
Wang, En-pei
Wu, Guang-yu
Ye, Tian-shen

Source

Evidence-Based Complementary and Alternative Medicine

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-11, 11 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-03-06

Country of Publication

Egypt

No. of Pages

11

Main Subjects

Medicine

Abstract EN

Background.

This study was to investigate the role of adenosine A2A receptors (A2AR) in inhibiting the effect of electroacupuncture (EA) on osteoclastogenesis in collagen-induced arthritis (CIA).

Methods.

Wistar rats were divided into four groups: sham-control group, CIA-control group, CIA-EA group, and CIA-EA-SCH58261 (A2AR antagonist) group.

We detected tumor necrosis factor-α (TNF-α), nuclear transcription factor-κB (NF-κB), receptor activator of NF-κB ligand (RANKL), protein kinase A (PKA), and extracellular regulatory protein kinase 1/2 (ERK1/2) in peripheral blood by ELISA.

PKA, ERK1/2, and NF-κB in ankle joints were determined by western blotting.

We evaluated the arthritis damage by histological examination and determined the number of osteoclasts by tartrate-resistant acid phosphatase (TRAP) staining.

Results.

EA treatment downregulated the expression of TNF-α, RANKL, PKA, ERK1/2, and NF-κB in peripheral blood but increased the levels of PKA and ERK1/2 in ankle joints.

Importantly, EA treatment reduced bone erosion as evidenced by the histological findings and inhibited osteoclastogenesis as revealed by TRAP staining.

All these effects of the EA treatment were reversed by combining EA treatment with the A2AR antagonist SCH58261.

Conclusion.

Our data suggest that EA treatment activated A2AR.

The effects of the A2AR antagonist SCH58261 suggest that the inhibition of osteoclast formation, the inhibition of TNF-α, RANKL, and NF-κB expression, and the increase of ERK1/2 are all dependent on this EA-induced A2AR activation.

It is therefore likely that these pathways with clearly defined roles in inflammation and bone erosion are at least partially involved in the mediation of the inhibition of synovitis and osteoclast formation induced by EA.

American Psychological Association (APA)

Du, Zhong-heng& Zhang, Chunwu& Xie, Wen-xia& Chen, Yong& Cong, Wen-jie& Wang, Ze-dong…[et al.]. 2019. Adenosine A2A Receptor Mediates Inhibition of Synovitis and Osteoclastogenesis after Electroacupuncture in Rats with Collagen-Induced Arthritis. Evidence-Based Complementary and Alternative Medicine،Vol. 2019, no. 2019, pp.1-11.
https://search.emarefa.net/detail/BIM-1149851

Modern Language Association (MLA)

Du, Zhong-heng…[et al.]. Adenosine A2A Receptor Mediates Inhibition of Synovitis and Osteoclastogenesis after Electroacupuncture in Rats with Collagen-Induced Arthritis. Evidence-Based Complementary and Alternative Medicine No. 2019 (2019), pp.1-11.
https://search.emarefa.net/detail/BIM-1149851

American Medical Association (AMA)

Du, Zhong-heng& Zhang, Chunwu& Xie, Wen-xia& Chen, Yong& Cong, Wen-jie& Wang, Ze-dong…[et al.]. Adenosine A2A Receptor Mediates Inhibition of Synovitis and Osteoclastogenesis after Electroacupuncture in Rats with Collagen-Induced Arthritis. Evidence-Based Complementary and Alternative Medicine. 2019. Vol. 2019, no. 2019, pp.1-11.
https://search.emarefa.net/detail/BIM-1149851

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1149851