Behaviour of Tritium and Tritiogenic Helium in Freshwater Lens Groundwater Systems: Insights from Langeoog Island, Germany

Joint Authors

Post, Vincent E. A.
Houben, Georg J.
Stoeckl, Leonard
Sültenfuß, Jürgen

Source

Geofluids

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-16, 16 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-10-07

Country of Publication

Egypt

No. of Pages

16

Main Subjects

Physics

Abstract EN

Tritium (3H) and its daughter product 3He have been widely used as tracers in hydrological studies, but quantitative analyses of their behaviour in freshwater lenses and the transition zone in coastal aquifers are presently lacking.

In this paper, the fate of 3H and 3He in the freshwater lens and the transition zone as well as the saltwater wedge is studied using numerical variable-density flow and transport models of different degrees of complexity.

The models are based on the conditions on the German island of Langeoog, which is uniquely suited for this purpose because of the high 3H concentration of the North Sea.

It is found that most bomb-related tritiogenic 3He still resides in the freshwater lens, making it a useful tracer for young (<60 years) groundwater.

Differences in dispersive transport between 3H and 3He can cause an apparent age bias on the order of 10 years.

Under favourable conditions, 3H from seawater can penetrate deep into the offshore part of the aquifer and has potential to be used as a tracer to study saltwater circulation patterns.

Our modelling suggests that the field-observed 3H in the transition zone does not originate from seawater but from freshwater affected by the bomb peak.

Yet in models with a low (αL=0.5 m) dispersivity, no 3H was sequestered into the transition zone and the transition zone width was underestimated.

Better results were obtained with αL=5 m, a value that is higher than in comparable modelling studies, which suggests that further work is needed to better understand the controls (tides, lithological heterogeneity, or transience of recharge and pumping) on transition zone mixing processes.

American Psychological Association (APA)

Post, Vincent E. A.& Houben, Georg J.& Stoeckl, Leonard& Sültenfuß, Jürgen. 2019. Behaviour of Tritium and Tritiogenic Helium in Freshwater Lens Groundwater Systems: Insights from Langeoog Island, Germany. Geofluids،Vol. 2019, no. 2019, pp.1-16.
https://search.emarefa.net/detail/BIM-1152562

Modern Language Association (MLA)

Post, Vincent E. A.…[et al.]. Behaviour of Tritium and Tritiogenic Helium in Freshwater Lens Groundwater Systems: Insights from Langeoog Island, Germany. Geofluids No. 2019 (2019), pp.1-16.
https://search.emarefa.net/detail/BIM-1152562

American Medical Association (AMA)

Post, Vincent E. A.& Houben, Georg J.& Stoeckl, Leonard& Sültenfuß, Jürgen. Behaviour of Tritium and Tritiogenic Helium in Freshwater Lens Groundwater Systems: Insights from Langeoog Island, Germany. Geofluids. 2019. Vol. 2019, no. 2019, pp.1-16.
https://search.emarefa.net/detail/BIM-1152562

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1152562