Prediction of Drifter Trajectory Using Evolutionary Computation

Joint Authors

Kim, Yong-Hyuk
Nam, Yong-Wook

Source

Discrete Dynamics in Nature and Society

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-15, 15 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-01-24

Country of Publication

Egypt

No. of Pages

15

Main Subjects

Mathematics

Abstract EN

We used evolutionary computation to predict the trajectory of surface drifters.

The data used to create the predictive model comprise the hourly position of the drifters, the flow and wind velocity at the location, and the location predicted by the MOHID model.

In contrast to existing numerical models that use the Lagrangian method, we used an optimization algorithm to predict the trajectory.

As the evaluation measure, a method that gives a better score as the Mean Absolute Error (MAE) when the difference between the predicted position in time and the actual position is lower and the Normalized Cumulative Lagrangian Separation (NCLS), which is widely used as a trajectory evaluation method of drifters, were used.

The evolutionary methods Differential Evolution (DE), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), and ensembles of the above were used, with the DE&PSO ensemble found to be the best prediction model.

Considering our objective to find a parameter that minimizes the fitness function to identify the average of the difference between the predictive change and the actual change, this model yielded better results than the existing numerical model in three of the four cases used for the test data, at an average of 19.36% for MAE and 5.96% for NCLS.

Thus, the model using the fitness function set in this study showed improved results in NCLS and thus shows that NCLS can be used sufficiently in the evaluation system.

American Psychological Association (APA)

Nam, Yong-Wook& Kim, Yong-Hyuk. 2018. Prediction of Drifter Trajectory Using Evolutionary Computation. Discrete Dynamics in Nature and Society،Vol. 2018, no. 2018, pp.1-15.
https://search.emarefa.net/detail/BIM-1152744

Modern Language Association (MLA)

Nam, Yong-Wook& Kim, Yong-Hyuk. Prediction of Drifter Trajectory Using Evolutionary Computation. Discrete Dynamics in Nature and Society No. 2018 (2018), pp.1-15.
https://search.emarefa.net/detail/BIM-1152744

American Medical Association (AMA)

Nam, Yong-Wook& Kim, Yong-Hyuk. Prediction of Drifter Trajectory Using Evolutionary Computation. Discrete Dynamics in Nature and Society. 2018. Vol. 2018, no. 2018, pp.1-15.
https://search.emarefa.net/detail/BIM-1152744

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1152744