New Contributions to Asarum Powder on Immunology Related Toxicity Effects in Lung

Joint Authors

Li, Yamin
Han, Lintao
Huang, Chunhua
Dai, Wangqiang
Tian, Guangyu
Huang, Fang
Li, Jingjing
Liu, Jinwei
Wang, Qiong
Zhou, Zhenxiang

Source

Evidence-Based Complementary and Alternative Medicine

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-14, 14 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-09-02

Country of Publication

Egypt

No. of Pages

14

Main Subjects

Medicine

Abstract EN

Objective.

Asarum is widely used in clinical practice of Chinese medicine in the treatment of respiratory diseases.

Many toxic ingredients (safrole, etc.) had been found in Asarum that show multiple visceral toxicities.

In this study, we performed systematic investigation of expression profiles of genes to take a new insight into unclear mechanism of Asarum toxicities in lung.

Methods.

mRNAs were extracted from lungs of rats after intragastric administration with/without Asarum powders, and microarray assays were applied to investigate gene expression profiles.

Differentially expressed genes with significance were selected to carry out GO analysis.

Subsequently, quantitative PCRs were performed to verify the differential expression of Tmprss6, Prkag3, Nptx2, Antxr11, Klk11, Rag2, Olr77, Cd7, Il20, LOC69, C6, Ccl20, LOC68, and Cd163 in lung.

Changes of Ampk, Bcl2, Caspase 3, Il1, Il20, Matriptase2, Nfκb, Nptx2, and Rag2 in the lung on protein level were verified by western blotting and immunohistochemistry.

Results.

Compared with control group, the estimated organ coefficients were relatively increased in Asarum group.

Results of GO analysis showed that a group of immune related genes in lung were expressed abnormally.

The result of PCRs showed that Ccl20 was downregulated rather than other upregulated genes in the Asarum group.

Western blotting and immunohistochemistry images showed that Asarum can upregulate the expression of Ampk, Caspase 3, Il1, Il20, Matriptase2, Nfκb, and Rag2 and downregulate the expression of Bcl2 in lung.

Conclusion.

Our data suggest that expressions of immune related genes in lung were selectively altered by Asarum.

Therefore, inflammatory response was active, by regulating Caspase 3, Il1, Il20, Matriptase2, Nfκb, Rag2, Tmprss6, Prkag3, Nptx2, Antxr1, Klk11, Olr77, Cd7, LOC69, C6, LOC68, Cd163, Ampk, Bcl2, and Ccl20.

Our study indicated that inflammatory factors take effect in lung toxicity caused by Asarum, which provides a new insight into molecular mechanism of Asarum toxicities in lung.

American Psychological Association (APA)

Li, Yamin& Han, Lintao& Huang, Chunhua& Dai, Wangqiang& Tian, Guangyu& Huang, Fang…[et al.]. 2018. New Contributions to Asarum Powder on Immunology Related Toxicity Effects in Lung. Evidence-Based Complementary and Alternative Medicine،Vol. 2018, no. 2018, pp.1-14.
https://search.emarefa.net/detail/BIM-1154291

Modern Language Association (MLA)

Li, Yamin…[et al.]. New Contributions to Asarum Powder on Immunology Related Toxicity Effects in Lung. Evidence-Based Complementary and Alternative Medicine No. 2018 (2018), pp.1-14.
https://search.emarefa.net/detail/BIM-1154291

American Medical Association (AMA)

Li, Yamin& Han, Lintao& Huang, Chunhua& Dai, Wangqiang& Tian, Guangyu& Huang, Fang…[et al.]. New Contributions to Asarum Powder on Immunology Related Toxicity Effects in Lung. Evidence-Based Complementary and Alternative Medicine. 2018. Vol. 2018, no. 2018, pp.1-14.
https://search.emarefa.net/detail/BIM-1154291

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1154291