A Fractal Model for Characterizing Hydraulic Properties of Fractured Rock Mass under Mining Influence

Joint Authors

Liu, Xiaoli
Liang, Tao
Wang, Sijing
Nawnit, Kumar

Source

Geofluids

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-17, 17 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-12-20

Country of Publication

Egypt

No. of Pages

17

Main Subjects

Physics

Abstract EN

In this paper, two basic assumptions are introduced: (1) The number and length distribution of fractures in fractured rock mass are in accordance with the fractal law.

(2) Fluid seepage in the fractures satisfies the cubic law.

Based on these two assumptions, the fractal model of parallel seepage and radial seepage in fractured rock mass is established, and the seepage tensor of fracture network which reflects the geometric characteristics and fractal characteristics of fracture network under two kinds of seepage is derived.

The influence of fracture geometry and fractal characteristics on permeability is analyzed, and the validity and accuracy of the model are verified by comparing the calculated results of the theoretical model and physical model test.

The results show that the permeability coefficient K of fracture network is a function of the geometric (maximum crack length Lmax, fractured horizontal projection length L0, diameter calculation section porosity Φ, fracture strike α, and fracture angle θ) and fractal characteristics (fracture network fractal dimension Df and seepage flow fractal dimension DT).

With the increase of fractal dimension Df, the permeability coefficient increases.

With the increase of DT, the permeability coefficient decreases rapidly.

And the larger the Df (Df>1.5), the greater the change of permeability coefficient K with DT.

American Psychological Association (APA)

Liu, Xiaoli& Liang, Tao& Wang, Sijing& Nawnit, Kumar. 2019. A Fractal Model for Characterizing Hydraulic Properties of Fractured Rock Mass under Mining Influence. Geofluids،Vol. 2019, no. 2019, pp.1-17.
https://search.emarefa.net/detail/BIM-1154448

Modern Language Association (MLA)

Liu, Xiaoli…[et al.]. A Fractal Model for Characterizing Hydraulic Properties of Fractured Rock Mass under Mining Influence. Geofluids No. 2019 (2019), pp.1-17.
https://search.emarefa.net/detail/BIM-1154448

American Medical Association (AMA)

Liu, Xiaoli& Liang, Tao& Wang, Sijing& Nawnit, Kumar. A Fractal Model for Characterizing Hydraulic Properties of Fractured Rock Mass under Mining Influence. Geofluids. 2019. Vol. 2019, no. 2019, pp.1-17.
https://search.emarefa.net/detail/BIM-1154448

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1154448