Quantify the Pore Water Velocity Distribution by a Celerity Function

Joint Authors

Yang, Zong-Ji
Shao, Wei
Su, Ye
Ma, Xieyao
Langhammer, Jakub

Source

Geofluids

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-19, 19 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-07-03

Country of Publication

Egypt

No. of Pages

19

Main Subjects

Physics

Abstract EN

Celerity and velocity of subsurface flow in soil porous medium are intimately linked with tracer transport, while only few current studies focused on their relations.

This study conducted theoretical analyses based on a pore bundle model, under which celerity in unsaturated flow is equivalent to maximum velocity.

Furthermore, under 3 models Brooks-Corey model and unmodified and modified Mualem-van Genuchten models, we used a celerity function to derive breakthrough curves aiming to quantify the advective tracer transport for 5 typical soil textures.

The results showed that the celerity under near-saturated conditions can be 5 up to 100 times larger than the saturated hydraulic conductivity, and a small volumetric fraction (<15%) of pores contributed more than half of the specific discharge.

First arrival time and extensive tailing of the breakthrough curves were controlled by maximum velocity and velocity distribution, accordingly.

As the kinematic ratio in the Brooks-Corey model remained constantly for each specific soil, we used it to quantify the ratio of maximum tracer velocity over average tracer velocity.

We also found that a bimodal soil hydraulic function (for a dual-permeability model) may result in similar soil hydraulic conductivity functions for different parameter sets, but their celerities are different.

The results showed that the proposed celerity function can assist in investigating subsurface flow and tracer transport, and the kinematic ratio could be used to predict the first arrival time of a conservative tracer.

American Psychological Association (APA)

Shao, Wei& Su, Ye& Yang, Zong-Ji& Ma, Xieyao& Langhammer, Jakub. 2018. Quantify the Pore Water Velocity Distribution by a Celerity Function. Geofluids،Vol. 2018, no. 2018, pp.1-19.
https://search.emarefa.net/detail/BIM-1157164

Modern Language Association (MLA)

Shao, Wei…[et al.]. Quantify the Pore Water Velocity Distribution by a Celerity Function. Geofluids No. 2018 (2018), pp.1-19.
https://search.emarefa.net/detail/BIM-1157164

American Medical Association (AMA)

Shao, Wei& Su, Ye& Yang, Zong-Ji& Ma, Xieyao& Langhammer, Jakub. Quantify the Pore Water Velocity Distribution by a Celerity Function. Geofluids. 2018. Vol. 2018, no. 2018, pp.1-19.
https://search.emarefa.net/detail/BIM-1157164

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1157164