Apparent Permeability Model for Shale Gas Reservoirs Considering Multiple Transport Mechanisms

Joint Authors

Huang, Shijun
Cheng, Linsong
Wu, Yonghui
Liu, Hongjun
Xue, Yongchao
Ding, Guanyang

Source

Geofluids

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-18, 18 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-06-04

Country of Publication

Egypt

No. of Pages

18

Main Subjects

Physics

Abstract EN

Shale formation is featured in nanopores and much gas adsorptions.

Gas flow in the shale matrix is not a singular viscous flow, but a combination of multiple mechanisms.

Much work has been carried out to analyze apparent permeability of shale, but little attention has been paid to the effect of unique gas behavior in nanopores at high pressure and adsorbed layer on apparent permeability.

This work presents a new model considering multiple transport mechanisms including viscous flow (without slip), slip flow, Knudsen diffusion, and surface diffusion in the adsorption layer.

Pore diameter and mean free path of gas molecules are corrected by considering the adsorption layer and dense gas effect, respectively.

Then the effects of desorption layer, surface diffusion, and gas behavior on gas apparent permeability in nanopores of shale are analyzed.

The results show that surface diffusion is the dominant flow mechanism in pores with small diameter at low pressure and that the effect of adsorbed layer and dense gas on apparent permeability is strongly affected by pressure and pore diameter.

From the analysis results, the permeability value calculated with the new apparent permeability model is lower than in the other model under high pressure and higher than in the other model under high pressure, so the gas production calculated using the new permeability model will be lower than using the other model at early stage and higher than using the other model at late stage.

American Psychological Association (APA)

Huang, Shijun& Wu, Yonghui& Cheng, Linsong& Liu, Hongjun& Xue, Yongchao& Ding, Guanyang. 2018. Apparent Permeability Model for Shale Gas Reservoirs Considering Multiple Transport Mechanisms. Geofluids،Vol. 2018, no. 2018, pp.1-18.
https://search.emarefa.net/detail/BIM-1157272

Modern Language Association (MLA)

Huang, Shijun…[et al.]. Apparent Permeability Model for Shale Gas Reservoirs Considering Multiple Transport Mechanisms. Geofluids No. 2018 (2018), pp.1-18.
https://search.emarefa.net/detail/BIM-1157272

American Medical Association (AMA)

Huang, Shijun& Wu, Yonghui& Cheng, Linsong& Liu, Hongjun& Xue, Yongchao& Ding, Guanyang. Apparent Permeability Model for Shale Gas Reservoirs Considering Multiple Transport Mechanisms. Geofluids. 2018. Vol. 2018, no. 2018, pp.1-18.
https://search.emarefa.net/detail/BIM-1157272

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1157272