Corrosion Inhibition Mechanism of Mild Steel by Amylose-AcetateCarboxymethyl Chitosan Composites in Acidic Media

Joint Authors

Erna, Maria
Herdini, Herdini
Futra, Dedi

Source

International Journal of Chemical Engineering

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-12, 12 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-02-14

Country of Publication

Egypt

No. of Pages

12

Abstract EN

This article details an investigation on the mechanism of corrosion inhibition of mild steel using amylose-acetate-blended carboxymethyl chitosan (AA-CMCh) in acidic media in the context of kinetic and thermodynamic parameters.

The surface of mild steel was exposed to test solutions and evaluated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX).

The activation energy (Ea), free energy of adsorption (ΔG), enthalpy of activation (ΔHads), and entropy of activation (ΔSads) were determined in order to elucidate the mechanism of corrosion inhibition.

The results confirmed that AA could be improved using CMCh as a corrosion inhibitor.

The corrosion rate decreased from 1109.00 to 229.70 mdd (79.29%), while corrosion inhibition increased from 35.13 to 89.72%.

Sulfate acid (H2SO4) of 0.25 M also helped in decreasing the corrosion rate from 2664.4 to 1041.67 mdd (60.9%) while also in increasing corrosion inhibition from 56.94 to 68.31%.

The calculated values for ΔG, ΔHads, and ΔSads were −33.22 kJ·mol−1, −48.56 kJ·mol−1, and 0.0495 kJ·mol−1·K−1, respectively.

The mechanism of corrosion inhibition of mild steel in the acidic condition is dominated and precipitated by the formation of the Fe-chelate compound, which was confirmed by the SEM/EDS spectrum.

The reactions were spontaneous, exothermic, and irregular and takes place on the surface of mild steel.

American Psychological Association (APA)

Erna, Maria& Herdini, Herdini& Futra, Dedi. 2019. Corrosion Inhibition Mechanism of Mild Steel by Amylose-AcetateCarboxymethyl Chitosan Composites in Acidic Media. International Journal of Chemical Engineering،Vol. 2019, no. 2019, pp.1-12.
https://search.emarefa.net/detail/BIM-1158757

Modern Language Association (MLA)

Erna, Maria…[et al.]. Corrosion Inhibition Mechanism of Mild Steel by Amylose-AcetateCarboxymethyl Chitosan Composites in Acidic Media. International Journal of Chemical Engineering No. 2019 (2019), pp.1-12.
https://search.emarefa.net/detail/BIM-1158757

American Medical Association (AMA)

Erna, Maria& Herdini, Herdini& Futra, Dedi. Corrosion Inhibition Mechanism of Mild Steel by Amylose-AcetateCarboxymethyl Chitosan Composites in Acidic Media. International Journal of Chemical Engineering. 2019. Vol. 2019, no. 2019, pp.1-12.
https://search.emarefa.net/detail/BIM-1158757

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1158757