An Airfield Soil Pavement Design Method Based on Rut Depth and Cumulative Fatigue

Joint Authors

Cai, Liangcai
Zhang, Duoyao
Zhou, Shaohui

Source

Journal of Advanced Transportation

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-11, 11 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-01-23

Country of Publication

Egypt

No. of Pages

11

Main Subjects

Civil Engineering

Abstract EN

The structure and damage modes of soil pavement, as well as existing problems in current design methods, were comprehensively analyzed, and a new design method for airfield soil pavement was proposed.

The proposed method avoids the use of the “designed aircraft” concept and instead adopts the cumulative fatigue theory widely used in permanent airfield design at present.

Moreover, in view of the lack of aircraft wheel trajectory distribution data, an approximate method for calculating the wheel trajectory distribution considering the side slip distance of the aircraft was proposed and the equivalent width of the wheel tread was calculated by introducing the modulus ratio.

Finally, the pass-to-coverage ratio was obtained.

According to the characteristics and damage modes of airfield soil pavement, rut depth was determined to be the unique factor affecting soil pavement damage, and resilient modulus was used as the control variable to improve the adverse impact of the empirical method.

Furthermore, according to the rut prediction formula for airfield soil pavement put forward by the US Army Engineer Research and Development Center, a fatigue equation based on the resilient modulus was proposed to calculate the allowable number of repetitions.

To verify the reliability of the design method, a test section was constructed at a test center in Jining, China, and the theoretical maximum allowable repetitions on the soil runway were calculated by the currently used California bearing ratio test, the β-fatigue equation, and the proposed method.

Aircraft traffic tests were carried out on the test section.

Finally, the theoretical and test results were compared and the values calculated via the proposed method were found to be consistent with experimental values, thereby validating the reliability of the method.

American Psychological Association (APA)

Zhang, Duoyao& Cai, Liangcai& Zhou, Shaohui. 2019. An Airfield Soil Pavement Design Method Based on Rut Depth and Cumulative Fatigue. Journal of Advanced Transportation،Vol. 2019, no. 2019, pp.1-11.
https://search.emarefa.net/detail/BIM-1169988

Modern Language Association (MLA)

Zhang, Duoyao…[et al.]. An Airfield Soil Pavement Design Method Based on Rut Depth and Cumulative Fatigue. Journal of Advanced Transportation No. 2019 (2019), pp.1-11.
https://search.emarefa.net/detail/BIM-1169988

American Medical Association (AMA)

Zhang, Duoyao& Cai, Liangcai& Zhou, Shaohui. An Airfield Soil Pavement Design Method Based on Rut Depth and Cumulative Fatigue. Journal of Advanced Transportation. 2019. Vol. 2019, no. 2019, pp.1-11.
https://search.emarefa.net/detail/BIM-1169988

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1169988