Flame Failures and Recovery in Industrial Furnaces: A Neural Network Steady-State Model for the Firing Rate Setpoint Rearrangement

Joint Authors

Chaibakhsh, Ali
Adili, Tahmineh
Rostamnezhad, Zohreh
Jamali, Ali

Source

International Journal of Chemical Engineering

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-15, 15 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-06-20

Country of Publication

Egypt

No. of Pages

15

Abstract EN

Burner failures are common abnormal conditions associated with industrial fired heaters.

Preventing from economic loss and major equipment damages can be attained by compensating the lost heat due to burners’ failures, which can be possible by defining appropriate setpoints to rearrange the firing rates for healthy burners.

In this study, artificial neural network models were developed for estimating the appropriate setpoints for the combustion control system to recover an industrial fired-heater furnace from abnormal conditions.

For this purpose, based on an accurate high-order mathematical model, constrained nonlinear optimization problems were solved using the genetic algorithm.

For different failure scenarios, the best possible excess firing rates for healthy burners to recover the furnace from abnormal conditions were obtained and data were recorded for training and testing stages.

The performances of the developed neural steady-state models were evaluated through simulation experiments.

The obtained results indicated the feasibility of the proposed technique to deal with the failures in the combustion system.

American Psychological Association (APA)

Adili, Tahmineh& Rostamnezhad, Zohreh& Chaibakhsh, Ali& Jamali, Ali. 2018. Flame Failures and Recovery in Industrial Furnaces: A Neural Network Steady-State Model for the Firing Rate Setpoint Rearrangement. International Journal of Chemical Engineering،Vol. 2018, no. 2018, pp.1-15.
https://search.emarefa.net/detail/BIM-1170130

Modern Language Association (MLA)

Adili, Tahmineh…[et al.]. Flame Failures and Recovery in Industrial Furnaces: A Neural Network Steady-State Model for the Firing Rate Setpoint Rearrangement. International Journal of Chemical Engineering No. 2018 (2018), pp.1-15.
https://search.emarefa.net/detail/BIM-1170130

American Medical Association (AMA)

Adili, Tahmineh& Rostamnezhad, Zohreh& Chaibakhsh, Ali& Jamali, Ali. Flame Failures and Recovery in Industrial Furnaces: A Neural Network Steady-State Model for the Firing Rate Setpoint Rearrangement. International Journal of Chemical Engineering. 2018. Vol. 2018, no. 2018, pp.1-15.
https://search.emarefa.net/detail/BIM-1170130

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1170130