Synthesis, Characterization, and Aqueous Properties of an Amphiphilic Terpolymer with a Novel Nonionic Surfmer

Joint Authors

Yu, Qin
Wu, Xiaolin
Li, Yanqiu
Gao, Tenglong
Liu, Siliang
Hou, Caiqing
Zheng, Zirong

Source

International Journal of Polymer Science

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-7, 7 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-11-07

Country of Publication

Egypt

No. of Pages

7

Main Subjects

Physics

Abstract EN

A series of surfactive amphiphilic polymer PAADs were prepared from the copolymerization of sodium acrylate, dodecyl polyoxyethylene acrylate (DPA, a surfmer), and acrylamide under the action of a mixed initiating agent consisting of ammonium persulfate-sodium bisulfite/2,2′-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride.

The aggregative behaviors of PAADs were explored by 13C nuclear magnetic resonance, a viscometer, and a surface tension instrument.

It was found that the apparent viscosity and surface activity of PAADs were significantly improved by the increase of average sequence length of hydrophobic micro blocks, strong intermolecular hydrophobic association, or the formation of mixed micelles between hydrophobic micro blocks and micromolecular surface-active agent.

The introduction of long-chain alkyls on molecular chains prolonged the average sequence length of hydrophobic micro blocks in molecular chains and enhanced the hydrophobic association between molecular chains and the tight arrangement of molecular chains on water surfaces, thereby increasing the surface activity.

Moreover, the anionic monomer sodium acrylate on molecular chains, via electrostatic repulsion, promoted the conversion from intrachain association to intermolecular association and thereby facilitated the formation of dense interfacial films, enhancing the surface activity of water solutions.

Then, the anion surfmer sodium dodecylbenzenesulfonate interacted with the hydrophobic micro blocks on the molecular chains to form mixed micelles, which accelerated the interchain association and enhanced the polymer surface activity.

The novel polymeric micelle with higher viscosifying ability and surface activity was expected to be a promising oil drive agent for tertiary oil recovery.

American Psychological Association (APA)

Yu, Qin& Wu, Xiaolin& Li, Yanqiu& Gao, Tenglong& Liu, Siliang& Hou, Caiqing…[et al.]. 2018. Synthesis, Characterization, and Aqueous Properties of an Amphiphilic Terpolymer with a Novel Nonionic Surfmer. International Journal of Polymer Science،Vol. 2018, no. 2018, pp.1-7.
https://search.emarefa.net/detail/BIM-1175410

Modern Language Association (MLA)

Yu, Qin…[et al.]. Synthesis, Characterization, and Aqueous Properties of an Amphiphilic Terpolymer with a Novel Nonionic Surfmer. International Journal of Polymer Science No. 2018 (2018), pp.1-7.
https://search.emarefa.net/detail/BIM-1175410

American Medical Association (AMA)

Yu, Qin& Wu, Xiaolin& Li, Yanqiu& Gao, Tenglong& Liu, Siliang& Hou, Caiqing…[et al.]. Synthesis, Characterization, and Aqueous Properties of an Amphiphilic Terpolymer with a Novel Nonionic Surfmer. International Journal of Polymer Science. 2018. Vol. 2018, no. 2018, pp.1-7.
https://search.emarefa.net/detail/BIM-1175410

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1175410