Innovations in Body Force Modeling of Transonic Compressor Blade Rows

Joint Authors

Hill, David J.
Defoe, Jeffrey J.

Source

International Journal of Rotating Machinery

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-12, 12 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-07-09

Country of Publication

Egypt

No. of Pages

12

Main Subjects

Mechanical Engineering

Abstract EN

Aeroengine fans and compressors increasingly operate subject to inlet distortion in the transonic flow regime.

In this paper, innovations to low-order numerical modeling of fans and compressors via volumetric source terms (body forces) are presented.

The approach builds upon past work to accommodate any axial fan/compressor geometry and ensures accurate work input and efficiency prediction across a range of flow coefficients.

In particular, the efficiency drop-off near choke is captured.

The model for a particular blade row is calibrated using data from single-passage bladed computations.

Compared to full-wheel unsteady computations which include the fan/compressor blades, the source term model approach can reduce computational cost by at least two orders of magnitude through a combination of reducing grid resolution and, critically, eliminating the need for a time-resolved approach.

The approach is applied to NASA stage 67.

For uniform flow, at 90% corrected speed and peak-efficiency, the body force model is able to predict the total-to-total pressure rise coefficient of the stage to within 1.43% and the isentropic efficiency to within 0.03%.

With a 120 ∘ sector of reduced inlet total pressure, distortion transfer through the machine is well-captured and the associated efficiency penalty predicted with less than 2.7% error.

American Psychological Association (APA)

Hill, David J.& Defoe, Jeffrey J.. 2018. Innovations in Body Force Modeling of Transonic Compressor Blade Rows. International Journal of Rotating Machinery،Vol. 2018, no. 2018, pp.1-12.
https://search.emarefa.net/detail/BIM-1175596

Modern Language Association (MLA)

Hill, David J.& Defoe, Jeffrey J.. Innovations in Body Force Modeling of Transonic Compressor Blade Rows. International Journal of Rotating Machinery No. 2018 (2018), pp.1-12.
https://search.emarefa.net/detail/BIM-1175596

American Medical Association (AMA)

Hill, David J.& Defoe, Jeffrey J.. Innovations in Body Force Modeling of Transonic Compressor Blade Rows. International Journal of Rotating Machinery. 2018. Vol. 2018, no. 2018, pp.1-12.
https://search.emarefa.net/detail/BIM-1175596

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1175596