Distinct Redox Signalling following Macrophage Activation Influences Profibrotic Activity

Joint Authors

Samuel, Chrishan S.
Lewis, Caitlin V.
Vinh, Antony
Diep, Henry
Kemp-Harper, Barbara K.
Drummond, Grant R.

Source

Journal of Immunology Research

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-15, 15 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-11-11

Country of Publication

Egypt

No. of Pages

15

Main Subjects

Biology

Abstract EN

Aims.

To date, the ROS-generating capacities of macrophages in different activation states have not been thoroughly compared.

This study is aimed at determining the nature and levels of ROS generated following stimulation with common activators of M1 and M2 macrophages and investigating the potential for this to impact fibrosis.

Results.

Human primary and THP-1 macrophages were treated with IFN-γ+LPS or IL-4-activating stimuli, and mRNA expression of established M1 (CXCL11, CCR7, IL-1β) and M2 (MRC-1, CCL18, CCL22) markers was used to confirm activation.

Superoxide generation was assessed by L-012-enhanced chemiluminescence and was increased in both M(IFN-γ+LPS) and M(IL-4) macrophages, as compared to unpolarised macrophages (MΦ).

This signal was attenuated with NOX2 siRNA.

Increased expression of the p47phox and p67phox subunits of the NOX2 oxidase complex was evident in M(IFN-γ+LPS) and M(IL-4) macrophages, respectively.

Amplex Red and DCF fluorescence assays detected increased hydrogen peroxide generation following stimulation with IL-4, but not IFN-γ+LPS.

Coculture with human aortic adventitial fibroblasts revealed that M(IL-4), but not M(IFN-γ+LPS), enhanced fibroblast collagen 1 protein expression.

Macrophage pretreatment with the hydrogen peroxide scavenger, PEG-catalase, attenuated this effect.

Conclusion.

We show that superoxide generation is not only enhanced with stimuli associated with M1 macrophage activation but also with the M2 stimulus IL-4.

Macrophages activated with IL-4 also exhibited enhanced hydrogen peroxide generation which in turn increased aortic fibroblast collagen production.

Thus, M2 macrophage-derived ROS is identified as a potentially important contributor to aortic fibrosis.

American Psychological Association (APA)

Lewis, Caitlin V.& Vinh, Antony& Diep, Henry& Samuel, Chrishan S.& Drummond, Grant R.& Kemp-Harper, Barbara K.. 2019. Distinct Redox Signalling following Macrophage Activation Influences Profibrotic Activity. Journal of Immunology Research،Vol. 2019, no. 2019, pp.1-15.
https://search.emarefa.net/detail/BIM-1175655

Modern Language Association (MLA)

Lewis, Caitlin V.…[et al.]. Distinct Redox Signalling following Macrophage Activation Influences Profibrotic Activity. Journal of Immunology Research No. 2019 (2019), pp.1-15.
https://search.emarefa.net/detail/BIM-1175655

American Medical Association (AMA)

Lewis, Caitlin V.& Vinh, Antony& Diep, Henry& Samuel, Chrishan S.& Drummond, Grant R.& Kemp-Harper, Barbara K.. Distinct Redox Signalling following Macrophage Activation Influences Profibrotic Activity. Journal of Immunology Research. 2019. Vol. 2019, no. 2019, pp.1-15.
https://search.emarefa.net/detail/BIM-1175655

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1175655