Response Mechanism of Cotton Growth to Water and Nutrients under Drip Irrigation with Plastic Mulch in Southern Xinjiang

Joint Authors

Li, Meng
Xiao, Jun
Bai, Yungang
Du, Yingji
Zhang, Fucang
Cheng, Houliang
Wang, Haoran

Source

Journal of Sensors

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-16, 16 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-03-07

Country of Publication

Egypt

No. of Pages

16

Main Subjects

Civil Engineering

Abstract EN

The effects of water and nutrient control measures on the cotton plant height, stem diameter, biomass, seed yield, and soil moisture under an irrigated plastic mulch production system were studied.

Using field experiments in the 2018 cotton-growing season, 6 fertilization treatments (30-10.5-4.5 (N-P2O5-K2O), 24-8.4-3.6 (N-P2O5-K2O), 20-7-3 (N-P2O5-K2O), 16-5.6-2.4 (N-P2O5-K2O), 10-3.5-1.5 (N-P2O5-K2O), and 0-0-0 (N-P2O5-K2O) kg/mu) and 6 deficit irrigation treatments (40% PET, 60% PET, and 80% PET) were established at the cotton budding and flowering stages.

Analysis of variance (ANOVA) (P<0.05) was used to evaluate the significant differences among the treatments.

The results showed that the effects of the water and nutrient control measures were obvious.

The irrigation water use efficiency (IWUE) was the highest under the 80% deficit irrigation (T7) treatment at the flowering stage (2.62 kg/m3).

Increases in cotton plant height and stem diameter were promoted by mild or moderate deficit irrigation at the flowering stage, but normal growth and development were affected by severe deficit irrigation at any growth stage.

The growth indexes of cotton increased with increasing fertilization, but significant differences between each fertilization gradient were not obvious.

At the same time, excessive fertilization not only had a positive effect on the LAI (leaf area index) and yield but also caused fertilizer waste and unnecessary cotton growth.

The cotton seed yield and single boll yield reached their highest values (566 kg/mu) under the 1.2 times fertilizer treatment (T9), but the 0.8 times fertilizer treatment had the highest IWUE among the nutrient control treatments (1.91 kg/m3).

Therefore, it is suggested that deficit irrigation at 60~80% of the potential evapotranspiration (PET) at the flowering stage and 16-5.6-2.4 (N-P2O5-K2O) fertilizer be applied as an optimal water and nutrient management strategy to maximize the seed cotton yield, IWUE, and overall growth and development of cotton.

American Psychological Association (APA)

Li, Meng& Xiao, Jun& Bai, Yungang& Du, Yingji& Zhang, Fucang& Cheng, Houliang…[et al.]. 2020. Response Mechanism of Cotton Growth to Water and Nutrients under Drip Irrigation with Plastic Mulch in Southern Xinjiang. Journal of Sensors،Vol. 2020, no. 2020, pp.1-16.
https://search.emarefa.net/detail/BIM-1190374

Modern Language Association (MLA)

Li, Meng…[et al.]. Response Mechanism of Cotton Growth to Water and Nutrients under Drip Irrigation with Plastic Mulch in Southern Xinjiang. Journal of Sensors No. 2020 (2020), pp.1-16.
https://search.emarefa.net/detail/BIM-1190374

American Medical Association (AMA)

Li, Meng& Xiao, Jun& Bai, Yungang& Du, Yingji& Zhang, Fucang& Cheng, Houliang…[et al.]. Response Mechanism of Cotton Growth to Water and Nutrients under Drip Irrigation with Plastic Mulch in Southern Xinjiang. Journal of Sensors. 2020. Vol. 2020, no. 2020, pp.1-16.
https://search.emarefa.net/detail/BIM-1190374

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1190374