High-Density Lipoprotein Reduction Differentially Modulates to Classical and Nonclassical Monocyte Subpopulations in Metabolic Syndrome Patients and in LPS-Stimulated Primary Human Monocytes In Vitro

Joint Authors

Islas-Andrade, Sergio
Bueno-Hernández, Nallely
Meléndez, Guillermo
Gómez-Arauz, Angélica Y.
Grün, Johanna L.
Manjarrez-Reyna, Aaron N.
Rückert, Felix
Escobedo, Galileo
Fragoso, José Manuel
Leon-Cabrera, Sonia

Source

Journal of Immunology Research

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-12, 12 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-04-03

Country of Publication

Egypt

No. of Pages

12

Main Subjects

Biology

Abstract EN

The effect of metabolic syndrome on human monocyte subpopulations has not yet been studied.

Our main goal was to examine monocyte subpopulations in metabolic syndrome patients, while also identifying the risk factors that could directly influence these cells.

Eighty-six subjects were divided into metabolic syndrome patients and controls.

Monocyte subpopulations were quantified by flow cytometry, and interleukin- (IL-) 1β secretion levels were measured by ELISA.

Primary human monocytes were cultured in low or elevated concentrations of high-density lipoprotein (HDL) and stimulated with lipopolysaccharide (LPS).

The nonclassical monocyte (NCM) percentage was significantly increased in metabolic syndrome patients as compared to controls, whereas classical monocytes (CM) were reduced.

Among all metabolic syndrome risk factors, HDL reduction exhibited the most important correlation with monocyte subpopulations and then was studied in vitro.

Low HDL concentration reduced the CM percentage, whereas it increased the NCM percentage and IL-1β secretion in LPS-treated monocytes.

The LPS effect was abolished when monocytes were cultured in elevated HDL concentrations.

Concurring with in vitro results, IL-1β serum values significantly increased in metabolic syndrome patients with low HDL levels as compared to metabolic syndrome patients without HDL reduction.

Our data demonstrate that HDL directly modulates monocyte subpopulations in metabolic syndrome.

American Psychological Association (APA)

Grün, Johanna L.& Manjarrez-Reyna, Aaron N.& Gómez-Arauz, Angélica Y.& Leon-Cabrera, Sonia& Rückert, Felix& Fragoso, José Manuel…[et al.]. 2018. High-Density Lipoprotein Reduction Differentially Modulates to Classical and Nonclassical Monocyte Subpopulations in Metabolic Syndrome Patients and in LPS-Stimulated Primary Human Monocytes In Vitro. Journal of Immunology Research،Vol. 2018, no. 2018, pp.1-12.
https://search.emarefa.net/detail/BIM-1191955

Modern Language Association (MLA)

Grün, Johanna L.…[et al.]. High-Density Lipoprotein Reduction Differentially Modulates to Classical and Nonclassical Monocyte Subpopulations in Metabolic Syndrome Patients and in LPS-Stimulated Primary Human Monocytes In Vitro. Journal of Immunology Research No. 2018 (2018), pp.1-12.
https://search.emarefa.net/detail/BIM-1191955

American Medical Association (AMA)

Grün, Johanna L.& Manjarrez-Reyna, Aaron N.& Gómez-Arauz, Angélica Y.& Leon-Cabrera, Sonia& Rückert, Felix& Fragoso, José Manuel…[et al.]. High-Density Lipoprotein Reduction Differentially Modulates to Classical and Nonclassical Monocyte Subpopulations in Metabolic Syndrome Patients and in LPS-Stimulated Primary Human Monocytes In Vitro. Journal of Immunology Research. 2018. Vol. 2018, no. 2018, pp.1-12.
https://search.emarefa.net/detail/BIM-1191955

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1191955