Efficient Semitransparent Perovskite Solar Cells Using a Transparent Silver Electrode and Four-Terminal PerovskiteSilicon Tandem Device Exploration

Joint Authors

Zhang, Chunfu
Chen, Dazheng
Zhang, Jincheng
Pang, Shangzheng
He, Fengqin
Lin, Zhenhua
Chang, Jingjing
Hao, Yue
Zhu, Weidong
Zhang, Hongxiao
Zhou, Long
Xi, He

Source

Journal of Nanomaterials

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-8, 8 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-05-03

Country of Publication

Egypt

No. of Pages

8

Main Subjects

Chemistry
Civil Engineering

Abstract EN

Four-terminal tandem solar cells employing a perovskite top cell and crystalline silicon (Si) bottom cell offer a simpler pathway to surpass the efficiency limit of market-leading single-junction silicon solar cells.

To obtain cost-effective top cells, it is crucial to develop transparent conductive electrodes with low parasitic absorption and manufacturing cost.

The commonly used indium tin oxide (ITO) shows some drawbacks, like the increasing prices and high-energy magnetron sputtering process.

Transparent metal electrodes are promising candidates owing to the simple evaporation process, facile process conditions, and high conductivity, and the cheaper silver (Ag) electrode with lower parasitic absorption than gold may be the better choice.

In this work, efficient semitransparent perovskite solar cells (PSCs) were firstly developed by adopting the composite cathode of an ultrathin Ag electrode at its percolation threshold thickness (11 nm), a molybdenum oxide optical coupling layer, and a bathocuproine interfacial layer.

The resulting power conversion efficiency (PCE) is 13.38% when the PSC is illuminated from the ITO side and the PCE is 8.34% from the Ag side, and no obvious current hysteresis can be observed.

Furthermore, by stacking an industrial Si bottom cell (PCE = 14.2%) to build a four-terminal architecture, the overall PCEs of 17.03% (ITO side) and 11.60% (Ag side) can be obtained, which are 27% and 39% higher, respectively, than those of the perovskite top cell.

Also, the PCE of the tandem cell has exceeded that of the reference Si solar cell by about 20%.

This work provides an outlook to fabricate high-performance solar cells via the cost-effective pathway.

American Psychological Association (APA)

Chen, Dazheng& Pang, Shangzheng& Zhu, Weidong& Zhang, Hongxiao& Zhou, Long& He, Fengqin…[et al.]. 2018. Efficient Semitransparent Perovskite Solar Cells Using a Transparent Silver Electrode and Four-Terminal PerovskiteSilicon Tandem Device Exploration. Journal of Nanomaterials،Vol. 2018, no. 2018, pp.1-8.
https://search.emarefa.net/detail/BIM-1194088

Modern Language Association (MLA)

Chen, Dazheng…[et al.]. Efficient Semitransparent Perovskite Solar Cells Using a Transparent Silver Electrode and Four-Terminal PerovskiteSilicon Tandem Device Exploration. Journal of Nanomaterials No. 2018 (2018), pp.1-8.
https://search.emarefa.net/detail/BIM-1194088

American Medical Association (AMA)

Chen, Dazheng& Pang, Shangzheng& Zhu, Weidong& Zhang, Hongxiao& Zhou, Long& He, Fengqin…[et al.]. Efficient Semitransparent Perovskite Solar Cells Using a Transparent Silver Electrode and Four-Terminal PerovskiteSilicon Tandem Device Exploration. Journal of Nanomaterials. 2018. Vol. 2018, no. 2018, pp.1-8.
https://search.emarefa.net/detail/BIM-1194088

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1194088