Flutter Performance of the Emergency Bridge with New-Type Cable-Girder

Joint Authors

Xu, Qian
Shao, Fei
Yang, Lei
Jiang, Ke-bin

Source

Mathematical Problems in Engineering

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-14, 14 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-03-17

Country of Publication

Egypt

No. of Pages

14

Main Subjects

Civil Engineering

Abstract EN

Based on the proposed emergency bridge scheme, the flutter performance of the emergency bridge with the new-type cable-girder has been investigated through wind tunnel tests and numerical simulation analyses.

Four aerodynamic optimization schemes have been developed in consideration of structure characteristics of the emergency bridge.

The flutter performances of the aerodynamic optimization schemes have been investigated.

The flutter derivatives of four aerodynamic optimization schemes have been analyzed.

According to the results, the optimal scheme has been determined.

Based on flutter theory of bridge, the differential equations of flutter of the emergency bridge with new-type cable-girder have been established.

Iterative method has been used for solving the differential equations.

The flutter analysis program has been compiled using the APDL language in ANSYS, and the bridge flutter critical wind speed of the optimal scheme has been determined by the program.

The flutter analysis program has also been used to determine the bridge flutter critical wind speed of different wind-resistance cable schemes.

The results indicate that the bridge flutter critical wind speed of the original emergency bridge scheme is lower than the flutter checking wind speed.

The aerodynamic combined measurements of central-slotted and wind fairing are the optimal scheme, with the safety coefficients larger than 1.2 at the wind attack angles of −3°, 0°, and +3°.

The bridge flutter critical wind speed of the optimal scheme has been determined using the flutter analysis program, and the numerical results agree well with the wind tunnel test results.

The wind-resistance cable scheme of 90° is the optimal wind cable scheme, and the bridge flutter critical wind speed increased 31.4%.

However, in consideration of the convenience in construction and the effectiveness in erection, the scheme of wind-resistance cable in the horizontal direction has been selected to be used in the emergency bridge with new-type cable-girder.

American Psychological Association (APA)

Yang, Lei& Shao, Fei& Xu, Qian& Jiang, Ke-bin. 2019. Flutter Performance of the Emergency Bridge with New-Type Cable-Girder. Mathematical Problems in Engineering،Vol. 2019, no. 2019, pp.1-14.
https://search.emarefa.net/detail/BIM-1194190

Modern Language Association (MLA)

Yang, Lei…[et al.]. Flutter Performance of the Emergency Bridge with New-Type Cable-Girder. Mathematical Problems in Engineering No. 2019 (2019), pp.1-14.
https://search.emarefa.net/detail/BIM-1194190

American Medical Association (AMA)

Yang, Lei& Shao, Fei& Xu, Qian& Jiang, Ke-bin. Flutter Performance of the Emergency Bridge with New-Type Cable-Girder. Mathematical Problems in Engineering. 2019. Vol. 2019, no. 2019, pp.1-14.
https://search.emarefa.net/detail/BIM-1194190

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1194190