Applications of the RST Algorithm to Nonlinear Systems in Real-Time Hybrid Simulation

Joint Authors

Tang, Yu
Qin, Hui

Source

Mathematical Problems in Engineering

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-13, 13 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-08-11

Country of Publication

Egypt

No. of Pages

13

Main Subjects

Civil Engineering

Abstract EN

Real-time substructure testing (RST) algorithm is a newly developed integration method for real-time hybrid simulation (RTHS) which has structure-dependent and explicit formulations for both displacement and velocity.

The most favourable characteristics of the RST algorithm is unconditionally stable for linear and no iterations are needed.

In order to fully evaluate the performance of the RST method in solving dynamic problems for nonlinear systems, stability, numerical dispersion, energy dissipation, and overshooting properties are discussed.

Stability analysis shows that the RST method is only conditionally stable when applied to nonlinear systems.

The upper stability limit increases for stiffness-softening systems with an increasing value of the instantaneous degree of nonlinearity while decreases for stiffness-hardening systems when the instantaneous degree of nonlinearity becomes larger.

Meanwhile, the initial damping ratio of the system has a negative impact on the upper stability limit especially for instantaneous stiffness softening systems, and a larger value of the damping ratio will significantly decrease the upper stability limit of the RST method.

It is shown in the accuracy analysis that the RST method has relatively smaller period errors and numerical damping ratios for nonlinear systems when compared with other two well-developed algorithms.

Three simplified engineering cases are presented to investigate the dynamic performance of the RST method, and the numerical results indicate that this method has a more desirable accuracy than other methods in solving dynamic problems for both linear and nonliner systems.

American Psychological Association (APA)

Tang, Yu& Qin, Hui. 2020. Applications of the RST Algorithm to Nonlinear Systems in Real-Time Hybrid Simulation. Mathematical Problems in Engineering،Vol. 2020, no. 2020, pp.1-13.
https://search.emarefa.net/detail/BIM-1196183

Modern Language Association (MLA)

Tang, Yu& Qin, Hui. Applications of the RST Algorithm to Nonlinear Systems in Real-Time Hybrid Simulation. Mathematical Problems in Engineering No. 2020 (2020), pp.1-13.
https://search.emarefa.net/detail/BIM-1196183

American Medical Association (AMA)

Tang, Yu& Qin, Hui. Applications of the RST Algorithm to Nonlinear Systems in Real-Time Hybrid Simulation. Mathematical Problems in Engineering. 2020. Vol. 2020, no. 2020, pp.1-13.
https://search.emarefa.net/detail/BIM-1196183

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1196183