Numerical Studies on the Heat Effect of Explosion Suppression by a Heat Pipe

Joint Authors

Zhang, Yaping
Ning, Ning
Quan, Xin
Zhang, Shuanwei

Source

Mathematical Problems in Engineering

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-9, 9 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-02-12

Country of Publication

Egypt

No. of Pages

9

Main Subjects

Civil Engineering

Abstract EN

A composite structure with a heat pipe and foamed iron-nickel composite fire suppression is proposed on the basis of the phase-change heat transfer of the heat pipe, which simultaneously attenuates the metal foam explosion energy.

A numerical simulation is conducted to evaluate the feasibility of the designed construction for suppressing explosions under various thicknesses and pore diameters of the metal foam.

The results demonstrate that when the foam iron-nickel metal is installed in the pipeline, the temperature reduction rate in the pipeline can reach 8.9%.

The new heat pipe foam composite structure can reduce the flame temperature to 1600 K within 0.095 s.

It is concluded that the heat pipe composite metal foam structure pipeline has a strong effect on suppressing combustion and explosion overpressure.

Due to the combined effect of the heat pipe vacuum chamber suction energy and the foamed iron-nickel, the flame temperature decay rate increases.

The maximum attenuation rate of the foamed iron-nickel for the gas explosion shock wave reaches 41.76%, and the maximum flame temperature attenuation rate reaches 64.7%.

The composite heat pipe structure can quickly disperse and transfer heat, thereby effectively destroying the heat storage environment as soon as possible to prevent a secondary explosion from occurring.

American Psychological Association (APA)

Zhang, Yaping& Ning, Ning& Quan, Xin& Zhang, Shuanwei. 2020. Numerical Studies on the Heat Effect of Explosion Suppression by a Heat Pipe. Mathematical Problems in Engineering،Vol. 2020, no. 2020, pp.1-9.
https://search.emarefa.net/detail/BIM-1200981

Modern Language Association (MLA)

Zhang, Yaping…[et al.]. Numerical Studies on the Heat Effect of Explosion Suppression by a Heat Pipe. Mathematical Problems in Engineering No. 2020 (2020), pp.1-9.
https://search.emarefa.net/detail/BIM-1200981

American Medical Association (AMA)

Zhang, Yaping& Ning, Ning& Quan, Xin& Zhang, Shuanwei. Numerical Studies on the Heat Effect of Explosion Suppression by a Heat Pipe. Mathematical Problems in Engineering. 2020. Vol. 2020, no. 2020, pp.1-9.
https://search.emarefa.net/detail/BIM-1200981

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1200981