An Investigation on the Aggregation and Rheodynamics of Human Red Blood Cells Using High Performance Computations

Joint Authors

Munjiza, Antonio
Xu, Dong
Ji, Chunning
Kaliviotis, Efstathios
Williams, John
Avital, Eldad J.

Source

Scientifica

Issue

Vol. 2017, Issue 2017 (31 Dec. 2017), pp.1-10, 10 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2017-04-04

Country of Publication

Egypt

No. of Pages

10

Main Subjects

Diseases

Abstract EN

Studies on the haemodynamics of human circulation are clinically and scientifically important.

In order to investigate the effect of deformation and aggregation of red blood cells (RBCs) in blood flow, a computational technique has been developed by coupling the interaction between the fluid and the deformable RBCs.

Parallelization was carried out for the coupled code and a high speedup was achieved based on a spatial decomposition.

In order to verify the code’s capability of simulating RBC deformation and transport, simulations were carried out for a spherical capsule in a microchannel and multiple RBC transport in a Poiseuille flow.

RBC transport in a confined tube was also carried out to simulate the peristaltic effects of microvessels.

Relatively large-scale simulations were carried out of the motion of 49,512 RBCs in shear flows, which yielded a hematocrit of 45%.

The large-scale feature of the simulation has enabled a macroscale verification and investigation of the overall characteristics of RBC aggregations to be carried out.

The results are in excellent agreement with experimental studies and, more specifically, both the experimental and simulation results show uniform RBC distributions under high shear rates (60–100/s) whereas large aggregations were observed under a lower shear rate of 10/s.

American Psychological Association (APA)

Xu, Dong& Ji, Chunning& Avital, Eldad J.& Kaliviotis, Efstathios& Munjiza, Antonio& Williams, John. 2017. An Investigation on the Aggregation and Rheodynamics of Human Red Blood Cells Using High Performance Computations. Scientifica،Vol. 2017, no. 2017, pp.1-10.
https://search.emarefa.net/detail/BIM-1202640

Modern Language Association (MLA)

Xu, Dong…[et al.]. An Investigation on the Aggregation and Rheodynamics of Human Red Blood Cells Using High Performance Computations. Scientifica No. 2017 (2017), pp.1-10.
https://search.emarefa.net/detail/BIM-1202640

American Medical Association (AMA)

Xu, Dong& Ji, Chunning& Avital, Eldad J.& Kaliviotis, Efstathios& Munjiza, Antonio& Williams, John. An Investigation on the Aggregation and Rheodynamics of Human Red Blood Cells Using High Performance Computations. Scientifica. 2017. Vol. 2017, no. 2017, pp.1-10.
https://search.emarefa.net/detail/BIM-1202640

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1202640