Melatonin Increases Bone Mass around the Prostheses of OVX Rats by Ameliorating Mitochondrial Oxidative Stress via the SIRT3SOD2 Signaling Pathway

Joint Authors

Zhou, Wei
Liu, Yu
Shen, Jining
Yu, Binqing
Bai, Jiaxiang
Lin, Jiayi
Guo, Xiaobin
Sun, Houyi
Chen, Zhanghuan
Yang, Huilin
Xu, Yaozeng
Geng, Dechun

Source

Oxidative Medicine and Cellular Longevity

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-16, 16 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-04-11

Country of Publication

Egypt

No. of Pages

16

Main Subjects

Biology

Abstract EN

Bone mass loss around prostheses is a major cause of implant failure, especially in postmenopausal osteoporosis patients.

In osteoporosis, excess oxidative stress largely contributed abnormal bone remodeling.

Melatonin, which is synthesized from the pineal gland, promotes osteoblast differentiation and bone formation and has effectively been used to combat oxidative stress.

Thus, we determined if melatonin can inhibit oxidative stress to promote osteogenesis and improve bone mass around prostheses in osteoporosis.

In this study, we observed that received melatonin at 50 mg/kg body weight significantly increased periprosthetic bone mass as well as implant fixation intensity in ovariectomized (OVX) rats.

Meanwhile, it decreased the expression of oxidative stress markers (NAPDH oxidase 2 and cytochrome c) and enhanced expressing level of the formation markers of bones (alkaline phosphatase, osteocalcin, and osterix) around prostheses compared to that in the control group.

Additionally, melatonin decreased hydrogen peroxide- (H2O2-) induced oxidative stress and restored the osteogenesis potential of MC3T3-E1 cells.

Mechanistically, melatonin clearly increased mitochondrial sirtuin 3 (SIRT3) expression and decreased the ratio of acetylated superoxide dismutase 2 (AC-SOD2)/SOD2 compared to the H2O2 group.

SIRT3 inhibition counteracted the protective effects of melatonin on oxidative stress and bone formation.

Together, the results showed that melatonin ameliorated oxidative stress in mitochondrial via the SIRT3/SOD2 signaling pathway, thereby promoting osteogenesis, improving bone mass around the prostheses, and increasing initial stability.

Thus, melatonin might be a suitable candidate to decrease the rate of implant failure and lengthen the lifespan of prostheses after total joint arthroplasty.

American Psychological Association (APA)

Zhou, Wei& Liu, Yu& Shen, Jining& Yu, Binqing& Bai, Jiaxiang& Lin, Jiayi…[et al.]. 2019. Melatonin Increases Bone Mass around the Prostheses of OVX Rats by Ameliorating Mitochondrial Oxidative Stress via the SIRT3SOD2 Signaling Pathway. Oxidative Medicine and Cellular Longevity،Vol. 2019, no. 2019, pp.1-16.
https://search.emarefa.net/detail/BIM-1203468

Modern Language Association (MLA)

Zhou, Wei…[et al.]. Melatonin Increases Bone Mass around the Prostheses of OVX Rats by Ameliorating Mitochondrial Oxidative Stress via the SIRT3SOD2 Signaling Pathway. Oxidative Medicine and Cellular Longevity No. 2019 (2019), pp.1-16.
https://search.emarefa.net/detail/BIM-1203468

American Medical Association (AMA)

Zhou, Wei& Liu, Yu& Shen, Jining& Yu, Binqing& Bai, Jiaxiang& Lin, Jiayi…[et al.]. Melatonin Increases Bone Mass around the Prostheses of OVX Rats by Ameliorating Mitochondrial Oxidative Stress via the SIRT3SOD2 Signaling Pathway. Oxidative Medicine and Cellular Longevity. 2019. Vol. 2019, no. 2019, pp.1-16.
https://search.emarefa.net/detail/BIM-1203468

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1203468