Cav-1 Ablation in Pancreatic Stellate Cells Promotes Pancreatic Cancer Growth through Nrf2-Induced shh Signaling

Joint Authors

Li, Xuqi
Li, Wei
Lei, Jianjun
Wang, Zheng
Shao, Shan
Qin, Tao
Qian, Weikun
Han, Liang
Zhang, Dong
Ma, Qingyong
Wu, Zheng
Wu, Erxi

Source

Oxidative Medicine and Cellular Longevity

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-12, 12 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-04-20

Country of Publication

Egypt

No. of Pages

12

Main Subjects

Biology

Abstract EN

A more comprehensive understanding of the complexity of pancreatic cancer pathobiology, especially, and understanding of the role of the tumor microenvironment (TME) in disease progression should pave the way for therapies to improve patient response rates.

Previous studies reported that caveolin-1 (Cav-1) has both tumor-promoting and tumor-suppressive functions.

However, the function of Cav-1 in the pancreatic cancer microenvironment remains largely unexplored.

Here, we show that coinjection of Cav-1-silenced pancreatic stellate cells (PSCs) with pancreatic cancer cells increased tumor growth.

To comprehensively characterize paracrine communication between pancreatic cancer cells and PSCs, PSCs were cultured with pancreatic cancer cell conditioned medium (CM) containing cytokines.

We reveal that Cav-1-silenced PSCs facilitated the growth of pancreatic cancer cells via enhanced paracrine shh/MMP2/bFGF/IL-6 signaling.

Specifically, Cav-1-silenced PSCs exhibited increased shh expression, which heterotypically activated the shh signaling pathway in pancreatic cancer cells.

Moreover, Cav-1-deficient PSCs accumulated ROS to enhance the shh pathway and angiogenesis in pancreatic cancer cells.

In addition, overexpression of Nrf2 reversed the effects of Cav-1 knockdown on PSCs, increasing ROS production and enhancing paracrine shh/MMP2/bFGF/IL-6 signaling.

Together, our findings show that stromal Cav-1 may mediate different mechanisms in the complex interaction between cancer cells and their microenvironment though Nrf2-induced shh signaling activation during pancreatic cancer progression.

American Psychological Association (APA)

Shao, Shan& Qin, Tao& Qian, Weikun& Li, Xuqi& Li, Wei& Han, Liang…[et al.]. 2020. Cav-1 Ablation in Pancreatic Stellate Cells Promotes Pancreatic Cancer Growth through Nrf2-Induced shh Signaling. Oxidative Medicine and Cellular Longevity،Vol. 2020, no. 2020, pp.1-12.
https://search.emarefa.net/detail/BIM-1203842

Modern Language Association (MLA)

Shao, Shan…[et al.]. Cav-1 Ablation in Pancreatic Stellate Cells Promotes Pancreatic Cancer Growth through Nrf2-Induced shh Signaling. Oxidative Medicine and Cellular Longevity No. 2020 (2020), pp.1-12.
https://search.emarefa.net/detail/BIM-1203842

American Medical Association (AMA)

Shao, Shan& Qin, Tao& Qian, Weikun& Li, Xuqi& Li, Wei& Han, Liang…[et al.]. Cav-1 Ablation in Pancreatic Stellate Cells Promotes Pancreatic Cancer Growth through Nrf2-Induced shh Signaling. Oxidative Medicine and Cellular Longevity. 2020. Vol. 2020, no. 2020, pp.1-12.
https://search.emarefa.net/detail/BIM-1203842

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1203842