The Antiaging Activity of Ergothioneine in UVA-Irradiated Human Dermal Fibroblasts via the Inhibition of the AP-1 Pathway and the Activation of Nrf2-Mediated Antioxidant Genes

Joint Authors

Hseu, You Cheng
Yang, Hsin-Ling
Gowrisankar, Yugandhar Vudhya
Chen, Xuan-Zao
Yang, Yi-Chen

Source

Oxidative Medicine and Cellular Longevity

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-13, 13 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-02-12

Country of Publication

Egypt

No. of Pages

13

Main Subjects

Biology

Abstract EN

UVA irradiation induced ROS-mediated photo damage to the human skin leading to coarseness, wrinkling, pigmentation, and cutaneous malignancies.

We investigated the dermatoprotective efficacies of submicromolar concentrations of ergothioneine (EGT, 0.125-0.5 μM), which occurs naturally as a sulfur-containing amino acid, in the mechanisms in human skin fibroblast (HSF) cells.

UVA-induced AP-1 (c-Fos and c-Jun) translocation was found to be inhibited by EGT treatments with the parallel inhibition of the collagenolytic matrix metalloproteinase- (MMP-) 1 activation and type I procollagen degradation.

Moreover, EGT mitigated UVA-induced ROS generation.

An increase in the amount of antioxidant genes (HO-1, NQO-1, and γ-GCLC) from EGT and were associated with upregulated Nrf2 expressions in a dose-dependent or time-dependent manner.

We confirmed this from Nrf2 translocation and increased nuclear ARE promoter activity that underlie EGT dermatoprotective activities.

Also, glutathione (GSH) levels (from γ-GCLC) were significantly increased.

Moreover, we showed that mediated by ERK, JNK, and PKC, signaling cascades mediate Nrf2 translocation.

We confirmed this phenomenon by the suppressed nuclear Nrf2 activation in cells that were treated with respective inhibitors (PD98059, SP600125, and GF109203X).

However, antioxidant protein expressions were impaired in Nrf2 knockdown cells to confirm that ARE/Nrf2 pathways and the inhibition of AP-1 had significant roles in EGT-mediated protective effects.

We can conclude that ergothioneine ameliorated UVA-induced skin aging and is a useful food supplement for skin care products.

American Psychological Association (APA)

Hseu, You Cheng& Gowrisankar, Yugandhar Vudhya& Chen, Xuan-Zao& Yang, Yi-Chen& Yang, Hsin-Ling. 2020. The Antiaging Activity of Ergothioneine in UVA-Irradiated Human Dermal Fibroblasts via the Inhibition of the AP-1 Pathway and the Activation of Nrf2-Mediated Antioxidant Genes. Oxidative Medicine and Cellular Longevity،Vol. 2020, no. 2020, pp.1-13.
https://search.emarefa.net/detail/BIM-1204001

Modern Language Association (MLA)

Hseu, You Cheng…[et al.]. The Antiaging Activity of Ergothioneine in UVA-Irradiated Human Dermal Fibroblasts via the Inhibition of the AP-1 Pathway and the Activation of Nrf2-Mediated Antioxidant Genes. Oxidative Medicine and Cellular Longevity No. 2020 (2020), pp.1-13.
https://search.emarefa.net/detail/BIM-1204001

American Medical Association (AMA)

Hseu, You Cheng& Gowrisankar, Yugandhar Vudhya& Chen, Xuan-Zao& Yang, Yi-Chen& Yang, Hsin-Ling. The Antiaging Activity of Ergothioneine in UVA-Irradiated Human Dermal Fibroblasts via the Inhibition of the AP-1 Pathway and the Activation of Nrf2-Mediated Antioxidant Genes. Oxidative Medicine and Cellular Longevity. 2020. Vol. 2020, no. 2020, pp.1-13.
https://search.emarefa.net/detail/BIM-1204001

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1204001