Clinopodium tomentosum (Kunth)‎ Govaerts Leaf Extract Influences in vitro Cell Proliferation and Angiogenesis on Primary Cultures of Porcine Aortic Endothelial Cells

Joint Authors

Bertocchi, Martina
Salaroli, Roberta
Bernardini, Chiara
Tubon, Irvin
Antognoni, Fabiana
Mandrioli, Roberto
Potente, Giulia
Vaca, Gabriela
Zannoni, Augusta
Forni, M.

Source

Oxidative Medicine and Cellular Longevity

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-11, 11 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-08-18

Country of Publication

Egypt

No. of Pages

11

Main Subjects

Biology

Abstract EN

Clinopodium tomentosum (Kunth) Govaerts is an endemic species in Ecuador, where it is used as an anti-inflammatory plant to treat respiratory and digestive affections.

In this work, effects of a Clinopodium tomentosum ethanolic extract (CTEE), prepared from aerial parts of the plant, were investigated on vascular endothelium functions.

In particularly, angiogenesis activity was evaluated, using primary cultures of porcine aortic endothelial cells (pAECs).

Cells were cultured for 24 h in the presence of CTEE different concentrations (10, 25, 50, and 100 μg/ml); no viability alterations were found in the 10-50 μg/ml range, while a slight, but significant, proliferative effect was observed at the highest dose.

In addition, treatment with CTEE was able to rescue LPS-induced injury in terms of cell viability.

The CTEE ability to affect angiogenesis was evaluated by scratch test analysis and by an in vitro capillary-like network assay.

Treatment with 25-50 μg/ml of extract caused a significant increase in pAEC’s migration and tube formation capabilities compared to untreated cells, as results from the increased master junctions’ number.

On the other hand, CTEE at 100 μg/ml did not induce the same effects.

Quantitative PCR data demonstrated that FLK-1 mRNA expression significantly increased at a CTEE dose of 25 μg/ml.

The CTEE phytochemical composition was assessed through HPLC-DAD; rosmarinic acid among phenolic acids and hesperidin among flavonoids were found as major phenolic components.

Total phenolic content and total flavonoid content assays showed that flavonoids are the most abundant class of polyphenols.

The CTEE antioxidant activity was also showed by means of the DPPH and ORAC assays.

Results indicate that CTEE possesses an angiogenic capacity in a dose-dependent manner; this represents an initial step in elucidating the mechanism of the therapeutic use of the plant.

American Psychological Association (APA)

Tubon, Irvin& Bernardini, Chiara& Antognoni, Fabiana& Mandrioli, Roberto& Potente, Giulia& Bertocchi, Martina…[et al.]. 2020. Clinopodium tomentosum (Kunth) Govaerts Leaf Extract Influences in vitro Cell Proliferation and Angiogenesis on Primary Cultures of Porcine Aortic Endothelial Cells. Oxidative Medicine and Cellular Longevity،Vol. 2020, no. 2020, pp.1-11.
https://search.emarefa.net/detail/BIM-1204107

Modern Language Association (MLA)

Tubon, Irvin…[et al.]. Clinopodium tomentosum (Kunth) Govaerts Leaf Extract Influences in vitro Cell Proliferation and Angiogenesis on Primary Cultures of Porcine Aortic Endothelial Cells. Oxidative Medicine and Cellular Longevity No. 2020 (2020), pp.1-11.
https://search.emarefa.net/detail/BIM-1204107

American Medical Association (AMA)

Tubon, Irvin& Bernardini, Chiara& Antognoni, Fabiana& Mandrioli, Roberto& Potente, Giulia& Bertocchi, Martina…[et al.]. Clinopodium tomentosum (Kunth) Govaerts Leaf Extract Influences in vitro Cell Proliferation and Angiogenesis on Primary Cultures of Porcine Aortic Endothelial Cells. Oxidative Medicine and Cellular Longevity. 2020. Vol. 2020, no. 2020, pp.1-11.
https://search.emarefa.net/detail/BIM-1204107

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1204107