TRPV1 and TRPA1 in Lung Inflammation and Airway Hyperresponsiveness Induced by Fine Particulate Matter (PM2.5)‎

Joint Authors

Adcock, Ian M.
Chung, Kian Fan
Xu, Mengmeng
Zhang, Yanbei
Wang, Muyun
Zhang, Hai
Chen, Yuqing
Mo, Jinhan
Zhang, Yinping
Li, Feng

Source

Oxidative Medicine and Cellular Longevity

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-15, 15 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-06-02

Country of Publication

Egypt

No. of Pages

15

Main Subjects

Biology

Abstract EN

Exposure to fine particulate matter (PM2.5) has been associated with lung inflammation and airway hyperresponsiveness (AHR).

Transient receptor potential (TRP) vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) both may play important roles in lung inflammation and AHR.

We investigated whether PM2.5-induced lung inflammation and AHR could be prevented by blocking TRPV1 and TRPA1 channels.

Mice were injected intraperitoneally with AMG9810 (30 mg/kg, a TRPV1 antagonist) or A967079 (30 mg/kg, a TRPA1 antagonist) or their combination or vehicle (PBS) one hour before intranasal instillation of PM2.5 (7.8 mg/kg) or vehicle (PBS) for two consecutive days, and then the mice were studied 24 h later.

All pretreatments inhibited PM2.5-induced AHR and inflammatory infiltration in the lung tissue and decreased inflammatory cytokine levels in the bronchoalveolar lavage fluid, together with oxidant levels in the lung.

AMG9810 inhibited MFF expression and increased MFN2 expression while A967079 inhibited DRP1 expression and increased OPA1 expression; combined pretreatment reduced MFF and DPR1 expression and increased MFN2 and OPA1 expression.

All pretreatments inhibited the activation of the TLR4/NF-κB pathway, while A967079 alone, and combined with AMG9810 also reduced the activation of the NLRP3/caspase-1 pathway.

Both TRPV1 and TRPA1 channels play an important role in PM2.5-induced lung inflammation and AHR.

However, inhibition of the TRPA1 channel or combined inhibition of TRPA1 and TRPV1 channels resulted in greater inhibitory effect on PM2.5-induced lung injury through regulating the mitochondrial fission/fusion proteins and inhibiting the TLR4/NF-κB and NLRP3/caspase-1 pathways.

American Psychological Association (APA)

Xu, Mengmeng& Zhang, Yanbei& Wang, Muyun& Zhang, Hai& Chen, Yuqing& Adcock, Ian M.…[et al.]. 2019. TRPV1 and TRPA1 in Lung Inflammation and Airway Hyperresponsiveness Induced by Fine Particulate Matter (PM2.5). Oxidative Medicine and Cellular Longevity،Vol. 2019, no. 2019, pp.1-15.
https://search.emarefa.net/detail/BIM-1205154

Modern Language Association (MLA)

Xu, Mengmeng…[et al.]. TRPV1 and TRPA1 in Lung Inflammation and Airway Hyperresponsiveness Induced by Fine Particulate Matter (PM2.5). Oxidative Medicine and Cellular Longevity No. 2019 (2019), pp.1-15.
https://search.emarefa.net/detail/BIM-1205154

American Medical Association (AMA)

Xu, Mengmeng& Zhang, Yanbei& Wang, Muyun& Zhang, Hai& Chen, Yuqing& Adcock, Ian M.…[et al.]. TRPV1 and TRPA1 in Lung Inflammation and Airway Hyperresponsiveness Induced by Fine Particulate Matter (PM2.5). Oxidative Medicine and Cellular Longevity. 2019. Vol. 2019, no. 2019, pp.1-15.
https://search.emarefa.net/detail/BIM-1205154

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1205154