New Insights into the Hepcidin-Ferroportin Axis and Iron Homeostasis in iPSC-Derived Cardiomyocytes from Friedreich’s Ataxia Patient

Joint Authors

Abruzzo, Provvidenza Maria
Marini, Marina
Bolotta, Alessandra
Baldassarro, Vito Antonio
Ghezzo, Alessandro
Zucchini, Cinzia
Scotlandi, Katia

Source

Oxidative Medicine and Cellular Longevity

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-11, 11 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-03-27

Country of Publication

Egypt

No. of Pages

11

Main Subjects

Biology

Abstract EN

Iron homeostasis in the cardiac tissue as well as the involvement of the hepcidin-ferroportin (HAMP-FPN) axis in this process and in cardiac functionality are not fully understood.

Imbalance of iron homeostasis occurs in several cardiac diseases, including iron-overload cardiomyopathies such as Friedreich’s ataxia (FRDA, OMIM no.

229300), a hereditary neurodegenerative disorder.

Exploiting the induced pluripotent stem cells (iPSCs) technology and the iPSC capacity to differentiate into specific cell types, we derived cardiomyocytes of a FRDA patient and of a healthy control subject in order to study the cardiac iron homeostasis and the HAMP-FPN axis.

Both CTR and FRDA iPSCs-derived cardiomyocytes express cardiac differentiation markers; in addition, FRDA cardiomyocytes maintain the FRDA-like phenotype.

We found that FRDA cardiomyocytes show an increase in the protein expression of HAMP and FPN.

Moreover, immunofluorescence analysis revealed for the first time an unexpected nuclear localization of FPN in both CTR and FRDA cardiomyocytes.

However, the amount of the nuclear FPN was less in FRDA cardiomyocytes than in controls.

These and other data suggest that iron handling and the HAMP-FPN axis regulation in FRDA cardiac cells are hampered and that FPN may have new, still not fully understood, functions.

These findings underline the complexity of the cardiac iron homeostasis.

American Psychological Association (APA)

Bolotta, Alessandra& Abruzzo, Provvidenza Maria& Baldassarro, Vito Antonio& Ghezzo, Alessandro& Scotlandi, Katia& Marini, Marina…[et al.]. 2019. New Insights into the Hepcidin-Ferroportin Axis and Iron Homeostasis in iPSC-Derived Cardiomyocytes from Friedreich’s Ataxia Patient. Oxidative Medicine and Cellular Longevity،Vol. 2019, no. 2019, pp.1-11.
https://search.emarefa.net/detail/BIM-1205231

Modern Language Association (MLA)

Bolotta, Alessandra…[et al.]. New Insights into the Hepcidin-Ferroportin Axis and Iron Homeostasis in iPSC-Derived Cardiomyocytes from Friedreich’s Ataxia Patient. Oxidative Medicine and Cellular Longevity No. 2019 (2019), pp.1-11.
https://search.emarefa.net/detail/BIM-1205231

American Medical Association (AMA)

Bolotta, Alessandra& Abruzzo, Provvidenza Maria& Baldassarro, Vito Antonio& Ghezzo, Alessandro& Scotlandi, Katia& Marini, Marina…[et al.]. New Insights into the Hepcidin-Ferroportin Axis and Iron Homeostasis in iPSC-Derived Cardiomyocytes from Friedreich’s Ataxia Patient. Oxidative Medicine and Cellular Longevity. 2019. Vol. 2019, no. 2019, pp.1-11.
https://search.emarefa.net/detail/BIM-1205231

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1205231