Vessel Wall-Derived Mesenchymal Stromal Cells Share Similar Differentiation Potential and Immunomodulatory Properties with Bone Marrow-Derived Stromal Cells

Joint Authors

Póliska, Szilárd
Rajnavölgyi, Éva
Veréb, Zoltán
Mázló, Anett
Szabó, Attila
Kiss, Attila
Litauszky, Krisztina
Koncz, Gábor
Boda, Zoltán
Bácsi, Attila

Source

Stem Cells International

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-16, 16 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-10-21

Country of Publication

Egypt

No. of Pages

16

Abstract EN

Purpose.

This study is aimed at investigating the phenotype, differentiation potential, immunomodulatory properties, and responsiveness of saphenous vein vessel wall-derived mesenchymal stromal cells (SV-MSCs) to various TLR ligands and proinflammatory cytokines, as well as comparing their features to those of their bone marrow-derived counterparts (BM-MSCs).

Methods.

SV-MSCs were isolated by enzymatic digestion of the saphenous vein vessel wall.

Phenotype analysis was carried out by flow cytometry and microscopy, whereas adipogenic, chondrogenic, and osteogenic differentiation potentials were tested in in vitro assays.

For comparative analysis, the expression of different stemness, proliferation, and differentiation-related genes was determined by Affymetrix gene array.

To compare the immunomodulatory properties of SV-MSCs and BM-MSCs, mixed lymphocyte reaction was applied.

To investigate their responses to various activating stimuli, MSCs were treated with TLR ligands (LPS, PolyI:C) or proinflammatory cytokines (TNFα, IL-1β, IFNγ), and the expression of various early innate immune response-related genes was assessed by qPCR, while secretion of selected cytokines and chemokines was measured by ELISA.

Results.

The isolated SV-MSCs were able to differentiate into bone, fat, and cartilage cells/direction in vitro.

SV-MSCs expressed the most important MSC markers (CD29, CD44, CD73, CD90, and CD105) and shared almost identical phenotypic characteristics with BM-MSCs.

Their gene expression pattern and activation pathways were close to those of BM-MSCs.

SV-MSCs showed better immunosuppressive activity inhibiting phytohemagglutinin-induced T lymphocyte proliferation in vitro than BM-MSCs.

Cellular responses to treatments mimicking inflammatory conditions were comparable in the bone marrow- and saphenous vein-derived MSCs.

Namely, similar to BM-MSCs, SV-MSCs secreted increased amount of IL-6 and IL-8 after 12- or 24-hour treatment with LPS, PolyI:C, TNFα, or IL-1β, compared to untreated controls.

Interestingly, a different CXCL-10/IP-10 secretion pattern could be observed under inflammatory conditions in the two types of MSCs.

Conclusion.

Based on our results, cells isolated from saphenous vein vessel wall fulfilled the ISCT’s (International Society for Cellular Therapy) criteria for multipotent mesenchymal stromal cells, and no significant differences in the phenotype, gene expression pattern, and responsiveness to inflammatory stimuli could be observed between BM-MSCs and SV-MSCs, while the latter cells have more potent immunosuppressive activity in vitro.

Further functional assays have to be performed to reveal whether SV-MSCs could be useful for certain regenerative therapeutic applications or tissue engineering purposes.

American Psychological Association (APA)

Veréb, Zoltán& Mázló, Anett& Szabó, Attila& Póliska, Szilárd& Kiss, Attila& Litauszky, Krisztina…[et al.]. 2020. Vessel Wall-Derived Mesenchymal Stromal Cells Share Similar Differentiation Potential and Immunomodulatory Properties with Bone Marrow-Derived Stromal Cells. Stem Cells International،Vol. 2020, no. 2020, pp.1-16.
https://search.emarefa.net/detail/BIM-1207971

Modern Language Association (MLA)

Veréb, Zoltán…[et al.]. Vessel Wall-Derived Mesenchymal Stromal Cells Share Similar Differentiation Potential and Immunomodulatory Properties with Bone Marrow-Derived Stromal Cells. Stem Cells International No. 2020 (2020), pp.1-16.
https://search.emarefa.net/detail/BIM-1207971

American Medical Association (AMA)

Veréb, Zoltán& Mázló, Anett& Szabó, Attila& Póliska, Szilárd& Kiss, Attila& Litauszky, Krisztina…[et al.]. Vessel Wall-Derived Mesenchymal Stromal Cells Share Similar Differentiation Potential and Immunomodulatory Properties with Bone Marrow-Derived Stromal Cells. Stem Cells International. 2020. Vol. 2020, no. 2020, pp.1-16.
https://search.emarefa.net/detail/BIM-1207971

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1207971