Uniaxial Cyclic Tensile Stretching at 8% Strain Exclusively Promotes Tenogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells

Joint Authors

Abbas, Azlina Amir
Pingguan-Murphy, Belinda
Kamarul, Tunku
Nam, Hui Yin
Merican, Azhar Mahmood

Source

Stem Cells International

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-16, 16 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-02-21

Country of Publication

Egypt

No. of Pages

16

Abstract EN

The present study was conducted to establish the amount of mechanical strain (uniaxial cyclic stretching) required to provide optimal tenogenic differentiation expression in human mesenchymal stromal cells (hMSCs) in vitro, in view of its potential application for tendon maintenance and regeneration.

Methods.

In the present study, hMSCs were subjected to 1 Hz uniaxial cyclic stretching for 6, 24, 48, and 72 hours; and were compared to unstretched cells.

Changes in cell morphology were observed under light and atomic force microscopy.

The tenogenic, osteogenic, adipogenic, and chondrogenic differentiation potential of hMSCs were evaluated using biochemical assays, extracellular matrix expressions, and selected mesenchyme gene expression markers; and were compared to primary tenocytes.

Results.

Cells subjected to loading displayed cytoskeletal coarsening, longer actin stress fiber, and higher cell stiffness as early as 6 hours.

At 8% and 12% strains, an increase in collagen I, collagen III, fibronectin, and N-cadherin production was observed.

Tenogenic gene expressions were highly expressed (p<0.05) at 8% (highest) and 12%, both comparable to tenocytes.

In contrast, the osteoblastic, chondrogenic, and adipogenic marker genes appeared to be downregulated.

Conclusion.

Our study suggests that mechanical loading at 8% strain and 1 Hz provides exclusive tenogenic differentiation; and produced comparable protein and gene expression to primary tenocytes.

American Psychological Association (APA)

Nam, Hui Yin& Pingguan-Murphy, Belinda& Abbas, Azlina Amir& Merican, Azhar Mahmood& Kamarul, Tunku. 2019. Uniaxial Cyclic Tensile Stretching at 8% Strain Exclusively Promotes Tenogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells International،Vol. 2019, no. 2019, pp.1-16.
https://search.emarefa.net/detail/BIM-1210071

Modern Language Association (MLA)

Nam, Hui Yin…[et al.]. Uniaxial Cyclic Tensile Stretching at 8% Strain Exclusively Promotes Tenogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells International No. 2019 (2019), pp.1-16.
https://search.emarefa.net/detail/BIM-1210071

American Medical Association (AMA)

Nam, Hui Yin& Pingguan-Murphy, Belinda& Abbas, Azlina Amir& Merican, Azhar Mahmood& Kamarul, Tunku. Uniaxial Cyclic Tensile Stretching at 8% Strain Exclusively Promotes Tenogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells International. 2019. Vol. 2019, no. 2019, pp.1-16.
https://search.emarefa.net/detail/BIM-1210071

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1210071