Propofol Protects Hippocampal Neurons from Hypoxia-Reoxygenation Injury by Decreasing Calcineurin-Induced Calcium Overload and Activating YAP Signaling

Joint Authors

Cai, Hui
Li, Xiaojun
Yao, Li
Liang, Qianlei
Qu, Hangyin

Source

Oxidative Medicine and Cellular Longevity

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-12, 12 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-06-26

Country of Publication

Egypt

No. of Pages

12

Main Subjects

Biology

Abstract EN

Objectives.

Propofol is a popular anesthetic drug that is neuroprotective.

However, the mechanisms of propofol for hippocampal neuroprotection remain elusive.

This study is aimed at investigating the neuroprotective effect and mechanism of propofol in hippocampal neurons exposed to ischemia-reperfusion (I/R) injury.

Methods.

Hypoxia-reoxygenated (H/R) HT-22 cells were used to mimic I/R injury of the hippocampus in vitro.

An MTT assay was used to determine cell viability.

Cell apoptosis was detected by a TUNEL assay and a flow cytometry cell apoptosis assay.

Expression levels of proteins were measured by Western blotting.

Intracellular calcium was assessed by Fura-2/AM staining.

Flow cytometry was used to determine the mitochondrial membrane potential (MMP).

Coimmunoprecipitation was used to evaluate the stability of the FKBP-RyR complex.

Calcineurin enzymatic activity was measured with a colorimetric method.

YAP nuclear translocation was tested by immunofluorescence staining.

Results.

H/R induced HT-22 cell viability depression, and apoptosis was reversed by propofol treatment.

Propofol could alleviate H/R-induced intracellular calcium accumulation and MMP loss by inhibiting calcineurin activity and FKBP12.6-RyR disassociation in a concentration-dependent manner.

In addition, YAP expression was crucial for propofol to protect HT-22 cell apoptosis from H/R injury.

Propofol could activate YAP through dephosphorylation.

Activated YAP stimulated the transcription of the Bcl2 gene, which promotes cellular survival.

Our data also demonstrated that propofol activated YAP through the RhoA-Lats1 pathway without large G proteins or MST involvement.

In addition, we showed that there was no interaction between calcineurin signaling and YAP activation in HT-22 cells.

Conclusions.

Propofol protected hippocampal neurons from I/R injury through two independent signaling pathways, including the calcineurin/FKBP12.6-RyR/calcium overload pathway and the RhoA/Lats1/YAP/Bcl-2 pathway.

American Psychological Association (APA)

Li, Xiaojun& Yao, Li& Liang, Qianlei& Qu, Hangyin& Cai, Hui. 2018. Propofol Protects Hippocampal Neurons from Hypoxia-Reoxygenation Injury by Decreasing Calcineurin-Induced Calcium Overload and Activating YAP Signaling. Oxidative Medicine and Cellular Longevity،Vol. 2018, no. 2018, pp.1-12.
https://search.emarefa.net/detail/BIM-1210904

Modern Language Association (MLA)

Li, Xiaojun…[et al.]. Propofol Protects Hippocampal Neurons from Hypoxia-Reoxygenation Injury by Decreasing Calcineurin-Induced Calcium Overload and Activating YAP Signaling. Oxidative Medicine and Cellular Longevity No. 2018 (2018), pp.1-12.
https://search.emarefa.net/detail/BIM-1210904

American Medical Association (AMA)

Li, Xiaojun& Yao, Li& Liang, Qianlei& Qu, Hangyin& Cai, Hui. Propofol Protects Hippocampal Neurons from Hypoxia-Reoxygenation Injury by Decreasing Calcineurin-Induced Calcium Overload and Activating YAP Signaling. Oxidative Medicine and Cellular Longevity. 2018. Vol. 2018, no. 2018, pp.1-12.
https://search.emarefa.net/detail/BIM-1210904

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1210904