Oxidative Stress Induces HSP90 Upregulation on the Surface of Primary Human Endothelial Cells: Role of the Antioxidant 7,8-Dihydroxy-4-methylcoumarin in Preventing HSP90 Exposure to the Immune System

Joint Authors

Buttari, Brigitta
Businaro, Rita
Capozzi, Antonella
Sorice, Maurizio
D’Arcangelo, Daniela
Parmar, Virinder S.
Garofalo, Tina
Facchiano, Antonio
Tinaburri, Lavinia
Kumar, Prashant
Singh, Brajendra K.
Riganò, Rachele
Profumo, Elisabetta
Saso, Luciano

Source

Oxidative Medicine and Cellular Longevity

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-9, 9 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-04-10

Country of Publication

Egypt

No. of Pages

9

Main Subjects

Biology

Abstract EN

We have previously demonstrated that human heat shock protein 90 (HSP90), an intracellular self protein, is the target of cellular and humoral autoimmune responses in patients with carotid atherosclerosis.

In this study, we evaluated in vitro whether oxidative stress, a feature of atherosclerotic plaque, alters HSP90 expression in endothelial cells, thus inducing surface localization of this molecule and whether the antioxidant compound 7,8-dihydroxy-4-methylcoumarin (7,8-DHMC) is able to prevent oxidative stress-induced alterations of HSP90 localization.

By the use of flow cytometry, immunofluorescence, enzyme-linked immunosorbent assay, and semiquantitative reverse-transcription polymerase chain reaction, we demonstrated that exposure of human umbilical vein endothelial cells (HUVEC) to the prooxidant compound H2O2 upregulated HSP90 surface expression and reduced its secretion without altering HSP90 gene expression and intracytoplasmic protein levels.

Pretreatment of HUVEC with 7,8-DHMC prevented H2O2-induced alterations of HSP90 cellular distribution and secretion.

Our results suggest that the strong oxidative conditions of atherosclerotic plaques promote the upregulation of HSP90 surface expression on endothelial cells, thus rendering the protein a possible target of autoimmune reactions.

The antioxidant 7,8-DHMC, by preventing oxidative-stress-triggered HSP90 surface upregulation, may be useful to counteract possible autoreactive reactions to HSP90.

American Psychological Association (APA)

Profumo, Elisabetta& Buttari, Brigitta& Tinaburri, Lavinia& D’Arcangelo, Daniela& Sorice, Maurizio& Capozzi, Antonella…[et al.]. 2018. Oxidative Stress Induces HSP90 Upregulation on the Surface of Primary Human Endothelial Cells: Role of the Antioxidant 7,8-Dihydroxy-4-methylcoumarin in Preventing HSP90 Exposure to the Immune System. Oxidative Medicine and Cellular Longevity،Vol. 2018, no. 2018, pp.1-9.
https://search.emarefa.net/detail/BIM-1211015

Modern Language Association (MLA)

Profumo, Elisabetta…[et al.]. Oxidative Stress Induces HSP90 Upregulation on the Surface of Primary Human Endothelial Cells: Role of the Antioxidant 7,8-Dihydroxy-4-methylcoumarin in Preventing HSP90 Exposure to the Immune System. Oxidative Medicine and Cellular Longevity No. 2018 (2018), pp.1-9.
https://search.emarefa.net/detail/BIM-1211015

American Medical Association (AMA)

Profumo, Elisabetta& Buttari, Brigitta& Tinaburri, Lavinia& D’Arcangelo, Daniela& Sorice, Maurizio& Capozzi, Antonella…[et al.]. Oxidative Stress Induces HSP90 Upregulation on the Surface of Primary Human Endothelial Cells: Role of the Antioxidant 7,8-Dihydroxy-4-methylcoumarin in Preventing HSP90 Exposure to the Immune System. Oxidative Medicine and Cellular Longevity. 2018. Vol. 2018, no. 2018, pp.1-9.
https://search.emarefa.net/detail/BIM-1211015

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1211015