The Effect of Chronic NO Synthase Inhibition on the Vasoactive and Structural Properties of Thoracic Aorta, NO Synthase Activity, and Oxidative Stress Biomarkers in Young SHR

Joint Authors

Majzunova, Miroslava
Berenyiova, A.
Kvandova, M.
Dovinová, Ima
Cacanyiova, Sona
Kristek, Frantisek
Jansen, Eugene H. J. M.

Source

Oxidative Medicine and Cellular Longevity

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-10, 10 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-06-28

Country of Publication

Egypt

No. of Pages

10

Main Subjects

Biology

Abstract EN

Although the role of nitric oxide (NO) in essential hypertension is still unclear, the effects of long-term NO deficiency have not yet been investigated during the critical juvenile period in spontaneously hypertensive rats (SHR).

We aimed to analyze the effects of chronic NO synthase (NOS) inhibition on systolic blood pressure (sBP), vasoactivity, morphological changes and superoxide level in the thoracic aorta (TA), NOS activity in different tissues, and general biomarkers of oxidative stress in plasma of young SHR.

Four-week-old SHR were treated with NG-nitro-L-arginine methyl ester (L-NAME, 50 mg/kg/day, p.o.) for 4-5 weeks.

L-NAME treatment induced a transient sBP increase only, and surprisingly, slightly inhibited endothelium-dependent relaxation of TA.

Hereby, the inhibition of NOS activity varied from tissue to tissue, ranging from the lowest in the TA and the kidney to the highest in the brain stem.

In spite of an increased sensitivity of adrenergic receptors, the maximal adrenergic contraction of TA was unchanged, which was associated with changes in elastin arrangement and an increase in wall thickness.

The production of reactive oxygen species in the TA was increased; however, the level of selected biomarkers of oxidative stress did not change.

Our findings proved that the TA of young SHR responded to chronic NO deficiency by the development of adaptive mechanisms on the functional (preserved NO-derived vasorelaxation, unincreased contraction) and molecular (preserved NOS activity) level.

American Psychological Association (APA)

Berenyiova, A.& Dovinová, Ima& Kvandova, M.& Kristek, Frantisek& Jansen, Eugene H. J. M.& Majzunova, Miroslava…[et al.]. 2018. The Effect of Chronic NO Synthase Inhibition on the Vasoactive and Structural Properties of Thoracic Aorta, NO Synthase Activity, and Oxidative Stress Biomarkers in Young SHR. Oxidative Medicine and Cellular Longevity،Vol. 2018, no. 2018, pp.1-10.
https://search.emarefa.net/detail/BIM-1211056

Modern Language Association (MLA)

Berenyiova, A.…[et al.]. The Effect of Chronic NO Synthase Inhibition on the Vasoactive and Structural Properties of Thoracic Aorta, NO Synthase Activity, and Oxidative Stress Biomarkers in Young SHR. Oxidative Medicine and Cellular Longevity No. 2018 (2018), pp.1-10.
https://search.emarefa.net/detail/BIM-1211056

American Medical Association (AMA)

Berenyiova, A.& Dovinová, Ima& Kvandova, M.& Kristek, Frantisek& Jansen, Eugene H. J. M.& Majzunova, Miroslava…[et al.]. The Effect of Chronic NO Synthase Inhibition on the Vasoactive and Structural Properties of Thoracic Aorta, NO Synthase Activity, and Oxidative Stress Biomarkers in Young SHR. Oxidative Medicine and Cellular Longevity. 2018. Vol. 2018, no. 2018, pp.1-10.
https://search.emarefa.net/detail/BIM-1211056

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1211056