Research on Vibration Characteristics of a Ceramic Spindle Based on the Reverse Magnetic Effect

Joint Authors

Zhang, Ke
Wang, Zhan
Wang, Zinan
Bai, Xiaotian
Shi, Huaitao

Source

Shock and Vibration

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-15, 15 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-05-02

Country of Publication

Egypt

No. of Pages

15

Main Subjects

Civil Engineering

Abstract EN

The electromagnetic radial force about a ceramic spindle affects the spindle dynamic, which determines the quality of processing.

Using a Timoshenko beam unit to build the dynamic model for the ceramic spindle, the dynamic characteristic of an angular contact ball bearing is analyzed using a nonlinear bearing model.

The electromagnetic magnetization model was established based on Maxwell’s theory to calculate electromagnetic magnetic density and radial force.

The influence about the reverse magnetic field characteristic of the ceramic rotating shaft and dynamic stiffness of the contact ball bearing on the dynamic phenomena of the spindle is analyzed, which is verified by experiments.

The results show that the magnetic effect produced by the reverse magnetic of ceramic rotation shaft has a great influence on the electromagnetic radial force.

Compared with the paramagnetic effect of the metal shaft, the dynamic characteristics of the spindle can be significantly improved.

Considering the coupling relationship between the radial force of the magnetic field and the bearing contact force, dynamic stiffness, and other factors, the accuracy of the model simulation is highly consistent with the test results.

In particular, the ceramic spindle model has been successful in predicting with high accuracy and is suitable for multiple extreme working conditions.

The parameters, such as initial eccentricity of the rotor, bearing preload, and rotating speed, can be adjusted to restrain the vibration of spindle.

The ceramic spindle model provides a theoretical basis for the dynamics development of a high-speed spindle.

American Psychological Association (APA)

Zhang, Ke& Wang, Zinan& Shi, Huaitao& Bai, Xiaotian& Wang, Zhan. 2019. Research on Vibration Characteristics of a Ceramic Spindle Based on the Reverse Magnetic Effect. Shock and Vibration،Vol. 2019, no. 2019, pp.1-15.
https://search.emarefa.net/detail/BIM-1211458

Modern Language Association (MLA)

Zhang, Ke…[et al.]. Research on Vibration Characteristics of a Ceramic Spindle Based on the Reverse Magnetic Effect. Shock and Vibration No. 2019 (2019), pp.1-15.
https://search.emarefa.net/detail/BIM-1211458

American Medical Association (AMA)

Zhang, Ke& Wang, Zinan& Shi, Huaitao& Bai, Xiaotian& Wang, Zhan. Research on Vibration Characteristics of a Ceramic Spindle Based on the Reverse Magnetic Effect. Shock and Vibration. 2019. Vol. 2019, no. 2019, pp.1-15.
https://search.emarefa.net/detail/BIM-1211458

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1211458