Response of RPC-Filled Circular Steel Tube Columns under Monotonic and Cyclic Axial Loading

Joint Authors

Hou, Xiaomeng
Rong, Qin
Zeng, Yusheng
Guo, Lanhui
Zheng, Wenzhong

Source

Shock and Vibration

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-16, 16 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-04-15

Country of Publication

Egypt

No. of Pages

16

Main Subjects

Civil Engineering

Abstract EN

Results from mechanical tests on thirteen reactive powder concrete- (RPC-) filled circular steel tube (RFCT) columns under monotonic and cyclic axial loading are presented in this paper.

The test variables include monotonic and cyclic loadings, confinement coefficient, and diameter of the steel tube.

The test results show that the envelope curves of specimens under cyclic loading were similar to the load-deformation curves of the specimens under monotonic loading.

Confinement coefficient had a significant influence on the failure modes of RFCT columns.

With an increase in confinement coefficient of 0.53 to 0.98, the failure mode transformed from shear failure to compressive failure for specimens under monotonic and cyclic loading.

In the elastic stage, no confining effect was provided by the steel tube to the RPC since Poisson’s ratio of steel was larger than the transverse deformation coefficient of RPC.

Beyond the elastic stage, the axial compressive strength and ultimate strain of RPC increased significantly due to the confining effect when compared to unconfined RPC.

Stress of the steel tube and RPC was investigated by using an elastic-plastic analytical model.

Before yielding of the steel tube, stress development in the tube was faster in the longitudinal direction than in the hoop direction.

The results of the experiment indicate that the compressive strength of RPC could be predicted by Mander’s model for confined concrete.

Based on Mander’s model, an equation is extended to calculate the axial compressive strength of RFCT columns, and the predicted results are in good agreement with the test results.

Based on comparative analysis of 180 RFCT columns axial compressive tests, the equation given by EC4 considering the confinement effect can be applied to predict the compressive strength of RFCT columns.

American Psychological Association (APA)

Rong, Qin& Zeng, Yusheng& Guo, Lanhui& Hou, Xiaomeng& Zheng, Wenzhong. 2019. Response of RPC-Filled Circular Steel Tube Columns under Monotonic and Cyclic Axial Loading. Shock and Vibration،Vol. 2019, no. 2019, pp.1-16.
https://search.emarefa.net/detail/BIM-1211672

Modern Language Association (MLA)

Rong, Qin…[et al.]. Response of RPC-Filled Circular Steel Tube Columns under Monotonic and Cyclic Axial Loading. Shock and Vibration No. 2019 (2019), pp.1-16.
https://search.emarefa.net/detail/BIM-1211672

American Medical Association (AMA)

Rong, Qin& Zeng, Yusheng& Guo, Lanhui& Hou, Xiaomeng& Zheng, Wenzhong. Response of RPC-Filled Circular Steel Tube Columns under Monotonic and Cyclic Axial Loading. Shock and Vibration. 2019. Vol. 2019, no. 2019, pp.1-16.
https://search.emarefa.net/detail/BIM-1211672

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1211672