Seismic Response of a Bridge Pile Foundation during a Shaking Table Test

Joint Authors

Feng, Zhongju
He, Jingbin
Dong, Yunxiu
Chen, Huiyun
Jiang, Guan
Yin, Honghua

Source

Shock and Vibration

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-16, 16 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-11-26

Country of Publication

Egypt

No. of Pages

16

Main Subjects

Civil Engineering

Abstract EN

Puqian Bridge is located in a quake-prone area in an 8-degree seismic fortification intensity zone, and the design of the peak ground motion is the highest grade worldwide.

Nevertheless, the seismic design of the pile foundation has not been evaluated with regard to earthquake damage and the seismic issues of the pile foundation are particularly noticeable.

We conducted a large-scale shaking table test (STT) to determine the dynamic characteristic of the bridge pile foundation.

An artificial mass model was used to determine the mechanism of the bridge pile-soil interaction, and the peak ground acceleration range of 0.15 g–0.60 g (g is gravity acceleration) was selected as the input seismic intensity.

The results indicated that the peak acceleration decreased from the top to the bottom of the bridge pile and the acceleration amplification factor decreased with the increase in seismic intensity.

When the seismic intensity is greater than 0.50 g, the acceleration amplification factor at the top of the pile stabilizes at 1.32.

The bedrock surface had a relatively small influence on the amplification of the seismic wave, whereas the overburden had a marked influence on the amplification of the seismic wave and filtering effect.

Damage to the pile foundation was observed at 0.50 g seismic intensity.

When the seismic intensity was greater than 0.50 g, the fundamental frequency of the pile foundation decreased slowly and tended to stabilize at 0.87 Hz.

The bending moment was larger at the junction of the pile and cap, the soft-hard soil interface, and the bedrock surface, where cracks easily occurred.

These positions should be focused on during the design of pile foundations in meizoseismal areas.

American Psychological Association (APA)

Dong, Yunxiu& Feng, Zhongju& He, Jingbin& Chen, Huiyun& Jiang, Guan& Yin, Honghua. 2019. Seismic Response of a Bridge Pile Foundation during a Shaking Table Test. Shock and Vibration،Vol. 2019, no. 2019, pp.1-16.
https://search.emarefa.net/detail/BIM-1211744

Modern Language Association (MLA)

Dong, Yunxiu…[et al.]. Seismic Response of a Bridge Pile Foundation during a Shaking Table Test. Shock and Vibration No. 2019 (2019), pp.1-16.
https://search.emarefa.net/detail/BIM-1211744

American Medical Association (AMA)

Dong, Yunxiu& Feng, Zhongju& He, Jingbin& Chen, Huiyun& Jiang, Guan& Yin, Honghua. Seismic Response of a Bridge Pile Foundation during a Shaking Table Test. Shock and Vibration. 2019. Vol. 2019, no. 2019, pp.1-16.
https://search.emarefa.net/detail/BIM-1211744

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1211744