Solid Lipid Nanoparticles of Myricitrin Have Antioxidant and Antidiabetic Effects on Streptozotocin-Nicotinamide-Induced Diabetic Model and Myotube Cell of Male Mouse

Joint Authors

Kouchak, Maryam
Oroojan, Ali Akbar
Ahangarpour, Akram
Khorsandi, Layasadat
Badavi, Mohammad

Source

Oxidative Medicine and Cellular Longevity

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-18, 18 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-07-17

Country of Publication

Egypt

No. of Pages

18

Main Subjects

Biology

Abstract EN

Type 2 diabetes mellitus (T2DM) may occur via oxidative stress.

Myricitrin is a plant-derived antioxidant, and its solid lipid nanoparticle (SLN) may be more potent.

Hence, the present study was conducted to evaluate the effects of myricitrin SLN on streptozotocin-nicotinamide- (STZ-NA-) induced T2DM of the mouse and hyperglycemic myotube.

In this experimental study, cold homogenization method was used to prepare SLN.

Then, 120 adult male NMRI mice were divided into 7 groups: control, vehicle, diabetes (received STZ 65 mg/kg 15 min after injected NA 120 mg/kg), diabetes + SLN containing myricitrin 1, 3, and 10 mg/kg, and diabetes + metformin.

For in vitro study, myoblast (C2C12) cell line was cultured and divided into 6 groups (n=3): control, hyperglycemia, hyperglycemia + SLN containing myricitrin 1, 3, and, 10 μM, and hyperglycemia + metformin.

After the last nanoparticle treatment, plasma samples, pancreas and muscle tissues, and myotubes were taken for experimental assessments.

Diabetes increased lipid peroxidation and reduced antioxidant defense along with the hyperglycemia, insulin resistance, and pancreas apoptosis.

Hyperglycemia induced oxidative stress, antioxidant impairment, and cellular apoptosis.

Myricitrin SLN improved diabetes and hyperglycemia complications in the in vivo and in vitro studies.

Therefore, SLN of myricitrin showed antioxidant, antidiabetic, and antiapoptotic effects in the mouse and myotube cells.

American Psychological Association (APA)

Ahangarpour, Akram& Oroojan, Ali Akbar& Khorsandi, Layasadat& Kouchak, Maryam& Badavi, Mohammad. 2018. Solid Lipid Nanoparticles of Myricitrin Have Antioxidant and Antidiabetic Effects on Streptozotocin-Nicotinamide-Induced Diabetic Model and Myotube Cell of Male Mouse. Oxidative Medicine and Cellular Longevity،Vol. 2018, no. 2018, pp.1-18.
https://search.emarefa.net/detail/BIM-1212006

Modern Language Association (MLA)

Ahangarpour, Akram…[et al.]. Solid Lipid Nanoparticles of Myricitrin Have Antioxidant and Antidiabetic Effects on Streptozotocin-Nicotinamide-Induced Diabetic Model and Myotube Cell of Male Mouse. Oxidative Medicine and Cellular Longevity No. 2018 (2018), pp.1-18.
https://search.emarefa.net/detail/BIM-1212006

American Medical Association (AMA)

Ahangarpour, Akram& Oroojan, Ali Akbar& Khorsandi, Layasadat& Kouchak, Maryam& Badavi, Mohammad. Solid Lipid Nanoparticles of Myricitrin Have Antioxidant and Antidiabetic Effects on Streptozotocin-Nicotinamide-Induced Diabetic Model and Myotube Cell of Male Mouse. Oxidative Medicine and Cellular Longevity. 2018. Vol. 2018, no. 2018, pp.1-18.
https://search.emarefa.net/detail/BIM-1212006

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1212006