TLDA: An Efficient Two-Layered Data Authentication Mechanism for Content-Centric Networking

Joint Authors

Youn, Taek-Young
Seo, Seog Chung

Source

Security and Communication Networks

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-17, 17 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-07-04

Country of Publication

Egypt

No. of Pages

17

Main Subjects

Information Technology and Computer Science

Abstract EN

Content-Centric Networking (CCN) is a new networking paradigm for the future Internet, which shifts the communication paradigm from host-centric to data-centric.

In CCN, contents are routed by their unique names and they are stored in network nodes by units of segment during transmission for future usage.

Since contents are stored in network nodes in a distributed manner, security is built into CCN data packets by embedding a public key signature to enable any content requesters to verify authenticity and integrity of contents.

However, the use of public key signatures for authenticating CCN data packets incurs significant overhead regarding computation and communication, which limits universal utilization of CCN.

Furthermore, this can lead to a new kind of DDoS attacks.

Even though CCN adopts an aggregate signature method based on Merkle Hash Tree (MHT) in its reference implementation, it still incurs large amount of overhead.

This paper presents TLDA, an efficient Two-Layered Data Authentication mechanism, which can considerably reduce overhead of computation and communication for authenticating data segments in CCN.

For efficiency of computation and communication, TLDA newly introduces the concept of authentication Meta part consisting of data segments’ hash values.

To a great extent TLDA not only reduces the computation and communication overhead compared with CCN’s basic authentication method, but also provides robustness against transmission loss and out-of-order transmission.

We have implemented TLDA and demonstrated that it provides 74.3% improved throughput and 36.557% reduced communication overhead compared to those of the original CCNx library developed by PARC when transmitting a 128Mbyte content in units of 1Kbyte segment with RSA-2048 and SHA-256 as its signature algorithm and hash algorithm, respectively.

American Psychological Association (APA)

Seo, Seog Chung& Youn, Taek-Young. 2018. TLDA: An Efficient Two-Layered Data Authentication Mechanism for Content-Centric Networking. Security and Communication Networks،Vol. 2018, no. 2018, pp.1-17.
https://search.emarefa.net/detail/BIM-1214212

Modern Language Association (MLA)

Seo, Seog Chung& Youn, Taek-Young. TLDA: An Efficient Two-Layered Data Authentication Mechanism for Content-Centric Networking. Security and Communication Networks No. 2018 (2018), pp.1-17.
https://search.emarefa.net/detail/BIM-1214212

American Medical Association (AMA)

Seo, Seog Chung& Youn, Taek-Young. TLDA: An Efficient Two-Layered Data Authentication Mechanism for Content-Centric Networking. Security and Communication Networks. 2018. Vol. 2018, no. 2018, pp.1-17.
https://search.emarefa.net/detail/BIM-1214212

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1214212