Vibratory Power Flow Analysis of a Gear-Housing-Foundation Coupled System

Joint Authors

Liu, Geng
Wang, Haiwei
Wu, Liyan
Ren, Yafeng
Chang, Shan

Source

Shock and Vibration

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-13, 13 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-06-28

Country of Publication

Egypt

No. of Pages

13

Main Subjects

Civil Engineering

Abstract EN

The marine gearbox is usually installed on a vibration isolation system in order to reduce oscillation transmitted to the ship foundation.

However, researches on vibration transmission in the gear-housing system and isolation system are currently independent.

With the increasing requirement of lower vibration, a coupled model needs to be built to control the vibration propagation from a view of the whole system.

Considering the mesh transmission error excitation of a gear pair, a flexible gear-housing-foundation coupled impedance model is constructed in this paper, and the vibratory power flow of the whole system is calculated.

Power transmissions between three different gearbox installation configurations, that is, rigid installation, single-stage isolation, and double-stage isolation, are compared.

Taking the single-stage isolation configuration as an example, parameter influences on the vibration of the foundation are studied.

Results show that double-stage isolation can achieve lower vibration than single-stage isolation; decrease in bearing stiffness or Young’s modulus of isolator will yield better vibration isolation performance; housing damping and isolator damping are beneficial to vibration reduction.

American Psychological Association (APA)

Ren, Yafeng& Chang, Shan& Liu, Geng& Wu, Liyan& Wang, Haiwei. 2018. Vibratory Power Flow Analysis of a Gear-Housing-Foundation Coupled System. Shock and Vibration،Vol. 2018, no. 2018, pp.1-13.
https://search.emarefa.net/detail/BIM-1215349

Modern Language Association (MLA)

Ren, Yafeng…[et al.]. Vibratory Power Flow Analysis of a Gear-Housing-Foundation Coupled System. Shock and Vibration No. 2018 (2018), pp.1-13.
https://search.emarefa.net/detail/BIM-1215349

American Medical Association (AMA)

Ren, Yafeng& Chang, Shan& Liu, Geng& Wu, Liyan& Wang, Haiwei. Vibratory Power Flow Analysis of a Gear-Housing-Foundation Coupled System. Shock and Vibration. 2018. Vol. 2018, no. 2018, pp.1-13.
https://search.emarefa.net/detail/BIM-1215349

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1215349