Solar air-heated humidification-dehumidification desalination unit

Other Title(s)

وحدة تحلية تعمل بالطاقة الشمسية على مبدأ ترطيب و إزالة الرطوبة من الهواء

Joint Authors

Ramadan, Abd al-Ghani
Miftah, Khayri
al-Kilani, Abd al-Fattah
Abd al-Malak, Ali
Issnid, Akram
Suud, Abu al-Qasim

Source

Solar Energy and Sustainable Development

Issue

Vol. 9, Issue 1 (30 Jun. 2020), pp.1-16, 16 p.

Publisher

Center for Solar Energy Research and Studies

Publication Date

2020-06-30

Country of Publication

Libya

No. of Pages

16

Main Subjects

Mechanical Engineering

Topics

Abstract EN

A solar powered desalination unit which working on a humidification –dehumidification technique (HDH) is one of the most important techniques used in brackish and seawater desalination especially in remote and rural areas.

In the present study, a test-rig was designed and constructed for conducting a set of experiments on a solar assisted desalination unit working on a HDH principle under the prevailing conditions of Tajoura-Libya.

Experiments were carried out on specified days in March, 2019 at the laboratories of Center for Solar Energy Research and Studies (CSERS) at Tajoura.

The effect of different design parameters and operating conditions on the performance of the unit and its productivity is closely investigated and interpreted.

Results show that the productivity of the HDH unit decreases by increasing the process air mass flow rate.

A significant improvement in the productivity of the unit is noticed when the feed water mass flow rate to the humidifier is increased.

Furthermore, initial water temperature inside the tank has a remarked effect on the productivity of the unit.

In order to obtain a reasonable amount of fresh water, the temperature of the water inside the tank should be increased.

Increasing the cooling water mass flow rate to the dehumidifier leads to a corresponding decrease in the surface temperature of the cooling coil and hence the productivity of the unit is improved.

The Productivity of the unit is varying from its lower value of (0.903 kg/m2.day) to a higher value of (6.47 kg/m2.day).

These values are obtained for one meter square of solar air heater area.

Gained Output Ratio (GOR) values range from a minimum of (0.082) to a maximum of (0.572).

It is reasonable when compared to ones in literature for the water-heated HDH units.

American Psychological Association (APA)

Ramadan, Abd al-Ghani& Miftah, Khayri& al-Kilani, Abd al-Fattah& Abd al-Malak, Ali& Issnid, Akram& Suud, Abu al-Qasim. 2020. Solar air-heated humidification-dehumidification desalination unit. Solar Energy and Sustainable Development،Vol. 9, no. 1, pp.1-16.
https://search.emarefa.net/detail/BIM-1340333

Modern Language Association (MLA)

Ramadan, Abd al-Ghani…[et al.]. Solar air-heated humidification-dehumidification desalination unit. Solar Energy and Sustainable Development Vol. 9, no. 1 (Jun. 2020), pp.1-16.
https://search.emarefa.net/detail/BIM-1340333

American Medical Association (AMA)

Ramadan, Abd al-Ghani& Miftah, Khayri& al-Kilani, Abd al-Fattah& Abd al-Malak, Ali& Issnid, Akram& Suud, Abu al-Qasim. Solar air-heated humidification-dehumidification desalination unit. Solar Energy and Sustainable Development. 2020. Vol. 9, no. 1, pp.1-16.
https://search.emarefa.net/detail/BIM-1340333

Data Type

Journal Articles

Language

English

Notes

Includes Appendix : p. 16

Record ID

BIM-1340333