Effects of proton exchange membrane (PEM)‎ thickness and equivalent weight (EW)‎ on the PEM fuel cell performance at different cell operating temperatures

Other Title(s)

تأثيرات سمك غشاء التبادل البروتوني (PEM)‎ و الوزن المكافئ (EW)‎ على أداء خلية الوقود PEM عند درجات حرارة تشغيل مختلفة للخلية

Joint Authors

Saghir, Abd al-Hamid Ali
Diyaf, Adil
Mazuz, Khalid A.
Issa, Naji A.

Source

Solar Energy and Sustainable Development

Issue

Vol. 9, Issue 1 (30 Jun. 2020), pp.35-44, 10 p.

Publisher

Center for Solar Energy Research and Studies

Publication Date

2020-06-30

Country of Publication

Libya

No. of Pages

10

Main Subjects

Physics

Topics

Abstract EN

The proton conductivity of Nafion 112, 1035, 1135, 115, and 117 membranes has been studied.

Measurements were made in 1 M H2SO4 at 298 K using a four-electrode, dc technique.

The membrane area resistance increases with thickness, and it was 0.065, 0.092, 0.076, 0.115, and 0.13 Ω.

cm2 for Nafion 112, 1035, 1135, 115, and 117 membranes respectively.

The results also showed that the proton conductivity of Nafion 112, 1035, 1135, 115, and 117 membranes was 0.09, 0.11, 0.10, 0.13, and 0.16 S.cm-1 respectively.

In the PEM fuel cell applications, it was observed that the optimum Nafion ionomer wt.% requirement does not change with the membrane thickness and the membrane EW.

In addition, the Nafion 1035 membrane can remain hydrated for longer than the Nafion 1135, or Nafion 112 membranes because it’s EW is (1000) lower than the Nafion EW of Nafion 1135 (1100), and Nafion 112 (1100).

In other words, a higher performance, more stable, and longer life PEM fuel cell can be obtained by using Nafion 1035 membrane as a solid electrolyte especially for high operating temperature.

American Psychological Association (APA)

Saghir, Abd al-Hamid Ali& Mazuz, Khalid A.& Issa, Naji A.& Diyaf, Adil. 2020. Effects of proton exchange membrane (PEM) thickness and equivalent weight (EW) on the PEM fuel cell performance at different cell operating temperatures. Solar Energy and Sustainable Development،Vol. 9, no. 1, pp.35-44.
https://search.emarefa.net/detail/BIM-1340336

Modern Language Association (MLA)

Saghir, Abd al-Hamid Ali…[et al.]. Effects of proton exchange membrane (PEM) thickness and equivalent weight (EW) on the PEM fuel cell performance at different cell operating temperatures. Solar Energy and Sustainable Development Vol. 9, no. 1 (Jun. 2020), pp.35-44.
https://search.emarefa.net/detail/BIM-1340336

American Medical Association (AMA)

Saghir, Abd al-Hamid Ali& Mazuz, Khalid A.& Issa, Naji A.& Diyaf, Adil. Effects of proton exchange membrane (PEM) thickness and equivalent weight (EW) on the PEM fuel cell performance at different cell operating temperatures. Solar Energy and Sustainable Development. 2020. Vol. 9, no. 1, pp.35-44.
https://search.emarefa.net/detail/BIM-1340336

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references : p. 44

Record ID

BIM-1340336