Palmitic acid mediated change of rhizosphere and alleviation of fusarium wilt disease in watermelon

Joint Authors

Liang, Xingyu
Wu, Fengzhi
Ma, Kexin
Kou, Jinming
Du, Wenting
Pan, Kai
Li, Wenhui

Source

Saudi Journal of Biological Sciences

Issue

Vol. 28, Issue 6 (30 Jun. 2021), pp.3616-3623, 8 p.

Publisher

Saudi Biological Society

Publication Date

2021-06-30

Country of Publication

Saudi Arabia

No. of Pages

8

Main Subjects

Agriculture

Abstract EN

Palmitic acid (PA) in root exudates or decaying residues can reduce the incidence of soil-borne diseases and promote the growth of some crop plants.

However, the effects of PA on soil-borne pathogens and microbial communities are poorly understood.

Here, we investigate the effects of PA on overall watermelon microbial communities and the populations of Fusarium oxysporum f.sp.

niveum (Fon).

The effects of PA on the mycelial growth and spore production of Fon were tested in vitro, while its effects on Fon, total bacteria and total fungi populations, and microbial communities were evaluated in a pot experiment.

The results revealed that all test concentrations of PA inhibited Fon mycelia growth and spore production.

The pot experiment showed that 0.5 mM and 1 mM PA reduced Fon but increased total bacteria populations, and 0.5 mM and 1 mM PA 0.5 mM and 1 mM PA promoted the change to a soil type of bacteria soil.

Meanwhile, 0.5 mM PA and 1 mM PA altered the community composition of the rhizosphere microorganisms and reduced the relative abundance of two bacterial operational taxonomic units(OTUs) and the two fungal OTUs that were significantly (p < 0.01) related with disease severity and increased that of four bacterial OTUs and the two fungal that were highly significantly (p < 0.01) negatively correlated with the disease severity.

These results suggest that application of PA decreased the populations of Fon, changed the rhizosphere microbial composition, reduced the disease severity of Fusarium wilt, and promoted the growth of watermelon.

American Psychological Association (APA)

Ma, Kexin& Du, Wenting& Liang, Xingyu& Wu, Fengzhi& Li, Wenhui& Pan, Kai…[et al.]. 2021. Palmitic acid mediated change of rhizosphere and alleviation of fusarium wilt disease in watermelon. Saudi Journal of Biological Sciences،Vol. 28, no. 6, pp.3616-3623.
https://search.emarefa.net/detail/BIM-1416983

Modern Language Association (MLA)

Du, Wenting…[et al.]. Palmitic acid mediated change of rhizosphere and alleviation of fusarium wilt disease in watermelon. Saudi Journal of Biological Sciences Vol. 28, no. 6 (2021), pp.3616-3623.
https://search.emarefa.net/detail/BIM-1416983

American Medical Association (AMA)

Ma, Kexin& Du, Wenting& Liang, Xingyu& Wu, Fengzhi& Li, Wenhui& Pan, Kai…[et al.]. Palmitic acid mediated change of rhizosphere and alleviation of fusarium wilt disease in watermelon. Saudi Journal of Biological Sciences. 2021. Vol. 28, no. 6, pp.3616-3623.
https://search.emarefa.net/detail/BIM-1416983

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references : p. 3622-3623

Record ID

BIM-1416983