Experimental and Numerical Evaluation of Direct Tension Test for Cylindrical Concrete Specimens

Joint Authors

Kim, Jung J.
Reda Taha, Mahmoud M.

Source

Advances in Civil Engineering

Issue

Vol. 2014, Issue 2014 (31 Dec. 2014), pp.1-8, 8 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2014-06-19

Country of Publication

Egypt

No. of Pages

8

Main Subjects

Civil Engineering

Abstract EN

Concrete cracking strength can be defined as the tensile strength of concrete subjected to pure tension stress.

However, as it is difficult to apply direct tension load to concrete specimens, concrete cracking is usually quantified by the modulus of rupture for flexural members.

In this study, a new direct tension test setup for cylindrical specimens (101.6 mm in diameter and 203.2 mm in height) similar to those used in compression test is developed.

Double steel plates are used to obtain uniform stress distributions.

Finite element analysis for the proposed test setup is conducted.

The uniformity of the stress distribution along the cylindrical specimen is examined and compared with rectangular cross section.

Fuzzy image pattern recognition method is used to assess stress uniformity along the specimen.

Moreover, the probability of cracking at different locations along the specimen is evaluated using probabilistic finite element analysis.

The experimental and numerical results of the cracking location showed that gravity effect on fresh concrete during setting time might affect the distribution of concrete cracking strength along the height of the structural elements.

American Psychological Association (APA)

Kim, Jung J.& Reda Taha, Mahmoud M.. 2014. Experimental and Numerical Evaluation of Direct Tension Test for Cylindrical Concrete Specimens. Advances in Civil Engineering،Vol. 2014, no. 2014, pp.1-8.
https://search.emarefa.net/detail/BIM-450323

Modern Language Association (MLA)

Kim, Jung J.& Reda Taha, Mahmoud M.. Experimental and Numerical Evaluation of Direct Tension Test for Cylindrical Concrete Specimens. Advances in Civil Engineering No. 2014 (2014), pp.1-8.
https://search.emarefa.net/detail/BIM-450323

American Medical Association (AMA)

Kim, Jung J.& Reda Taha, Mahmoud M.. Experimental and Numerical Evaluation of Direct Tension Test for Cylindrical Concrete Specimens. Advances in Civil Engineering. 2014. Vol. 2014, no. 2014, pp.1-8.
https://search.emarefa.net/detail/BIM-450323

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-450323