Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines

Author

Ligrani, Phil

Source

International Journal of Rotating Machinery

Issue

Vol. 2013, Issue 2013 (31 Dec. 2013), pp.1-32, 32 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2013-03-31

Country of Publication

Egypt

No. of Pages

32

Main Subjects

Mechanical Engineering

Abstract EN

To provide an overview of the current state of the art of heat transfer augmentation schemes employed for internal cooling of turbine blades and components, results from an extensive literature review are presented with data from internal cooling channels, both with and without rotation.

According to this survey, a very small number of existing investigations consider the use of combination devices for internal passage heat transfer augmentation.

Examples are rib turbulators, pin fins, and dimples together, a combination of pin fins and dimples, and rib turbulators and pin fins in combination.

The results of such studies are compared with data obtained prior to 2003 without rotation influences.

Those data are comprised of heat transfer augmentation results for internal cooling channels, with rib turbulators, pin fins, dimpled surfaces, surfaces with protrusions, swirl chambers, or surface roughness.

This comparison reveals that all of the new data, obtained since 2003, collect within the distribution of globally averaged data obtained from investigations conducted prior to 2003 (without rotation influences).

The same conclusion in regard to data distributions is also reached in regard to globally averaged thermal performance parameters as they vary with friction factor ratio.

These comparisons, made on the basis of such judgment criteria, lead to the conclusion that improvements in our ability to provide better spatially-averaged thermal protection have been minimal since 2003.

When rotation is present, existing investigations provide little evidence of overall increases or decreases in overall thermal performance characteristics with rotation, at any value of rotation number, buoyancy parameter, density ratio, or Reynolds number.

Comparisons between existing rotating channel experimental data and the results obtained prior to 2003, without rotation influences, also show that rotation has little effect on overall spatially-averaged thermal performance as a function of friction factor.

American Psychological Association (APA)

Ligrani, Phil. 2013. Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines. International Journal of Rotating Machinery،Vol. 2013, no. 2013, pp.1-32.
https://search.emarefa.net/detail/BIM-459573

Modern Language Association (MLA)

Ligrani, Phil. Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines. International Journal of Rotating Machinery No. 2013 (2013), pp.1-32.
https://search.emarefa.net/detail/BIM-459573

American Medical Association (AMA)

Ligrani, Phil. Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines. International Journal of Rotating Machinery. 2013. Vol. 2013, no. 2013, pp.1-32.
https://search.emarefa.net/detail/BIM-459573

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-459573